Answers to Questions

Chapter 1

- $1.9 \ 23.7 \ day$
- $1.11 \ 10 \ {\rm m}$
- $1.12 1^{\circ} C m^{-1} = -1,000^{\circ} C km^{-1}$, a very strong inversion!!
- 1.13 $p \simeq 800$ hPa and $\rho \simeq 1.00$ kg m⁻³.
- $1.16 \simeq 20\%$
- $1.17~8~\mathrm{km}$
- 1.18 The average mass per unit area of water vapor is $\sim 30 \text{ kg m}^{-3}$ rather than 100 kg m⁻³ as stated in the text. Using this more realistic value yields a depth of $\sim 3 \text{ cm}$.
- $1.19~8~\mathrm{km}$
- $1.20 \ 1.18 \times 10^{11} \ \mathrm{kg \ s^{-1}}$
- $1.21\ \ 2.46\ \rm mm\ s^{-1}$

- 2.8 1.5 $\times 10^{11}~{\rm kg~s^{-1}}$ for the Gulf stream versus $1.18 \times 10^{11}~{\rm kg~s^{-1}}$ for the Hadley cell
- $2.9\ 1.7\ \mathrm{mm}\ \mathrm{day}$
- $2.10\ 78\ \mathrm{m}$
- 2.15 (a) \sim 700 years, (b) \sim 300 years
- 2.16 The concentration of CO_2 would increase to 1567 ppm, roughly 4 times its current value. The concentration of O_2 would drop by ~ 1%.
- $2.18\ 2.36 \times 10^{-3} \times c_0$
- 2.19 37×10^5 Pa; $\sim 3\%$
- $2.20 \sim 0.1 \text{ kg m}^{-2}$
- 2.21 The present mass is $\sim 39\%$ of the mass at the time of the LGM

- $3.19 43.2; 192 \text{ J kg}^{-1} \text{ K}^{-1}$
- 3.20 $T_v T \simeq 1^{\circ} C$
- $3.22 \ 87.4^{\circ}C$
- $3.23 \ 3377 \ m^3$
- $3.25 \sim 4 \text{ m too high}$
- $3.26~\sim 12^{\circ}\mathrm{C}$
- $3.27\ 5654\ {\rm m}$
- 3.28 0.98°C; 20 m
- 3.29 A rise of 8.9° C
- $3.31 \ 1064 \ {\rm m}$
- $3.32~3.8\times10~\mathrm{J}$
- 3.33 -86.2°C; 643 hPa
- 3.34 5.23 kg
- $3.35 ~ 1.51 \times 10^6 ~ \rm{J}$
- 3.37 66°C from the chart versus 64.5 from Eq. (3.54) with $R_d/c_p = 0.286$. The difference is due to the fact that the xhart is based on $R_d/c_p = 0.288$. The actual values of c_p and c_v for dry air are known only within an accuracy of around ± 2.5 J kg⁻¹ K⁻¹.
- 3.38 (a) $K_m = 0.20H$; (b) $\frac{1}{c_s} \frac{dc_s}{dT} = 0.20 \frac{c_v}{R_d T}$
- $3.39\ 0.84\%$
- $3.40 \ 0.14 \ {\rm g}$
- $3.41 \ 33.7^{\circ}C; 1.15 \text{ kg m}^{-3}$
- 3.42 2.81 hPa; 15.3°C
- $3.43 \ 6.0 \ \mathrm{g \ kg^{-1}}$
- $3.45 \sim 2.5^{\circ}C$
- 3.46 (a) 5.1 g kg⁻¹, 47%, 9.3°C; (b) 5.1 g kg⁻¹, 75%, 4.5°C, 288 K, 9.3°C; (c) 4.3 g kg⁻¹, 100%, -1.1°C, 290 K, 9.3°C; (d) 847 hPa
- 3.47 (a) 18°C; (b) 62°C; (c) the equivalent potential temperature (θ_e); (d) ~20°C

- 3.48 14°C; 19.8°C
- 3.53 (a) AB unstable; BC neutral; CD neutral; DE stable; EF stable; FG stable.(b) All layers are convectively unstable except CD, which is convectively neutral.
- 3.54 (b) 1.17 kg m^{-3}
- 3.58 53.6 J; 146.4 J
- 3.59 6.93 min
- 3.60 (a) $K(T_o T_i)^2/T_i$ (b) 125%
- 3.61 An increase of 17.3 J kg⁻¹.
- 3.62 An increase of 2.0 J kg⁻¹.
- $3.64 88.7^{\circ}C$
- 3.65 A decrease of 0.0074° C.

- $4.12~5450~\mu\mathrm{m}$
- $4.14 \ 0.31 \ {\rm W \ m^{-2}}$
- $4.15~0.25~\mathrm{W~m^{-2}}$ and $0.06~\mathrm{W~m^{-2}}$ reflected
- 4.16 (a) 0.84 (b) 0.74
- $4.17 537 \text{ W m}^{-2}$; $46.4 \text{ MJ m}^{-2} \text{ day}^{-1}$
- $4.18 440 \text{ W m}^{-2}$; $38.0 \text{ MJ m}^{-2} \text{ day}^{-1}$
- 4.19 Answer not available yet
- $4.20 \ 1.4 \ {\times}10^{-10}$
- 4.21 (a) $1.7^{\circ}C$ (b) $0.91^{\circ}C$
- $4.23 \ \ 3.85 \times 10^{26} \ {\rm W}$
- 4.27 87 W m $^{-2}.$ In contrast, the geothermal energy emitted by the earth is estimated to be ${\sim}0.06$ W m $^{-2}.$
- 4.28 Answer not available yet.
- $4.29 \ 2.72 \times 10^6 \text{ s} \text{ (or 31.5 days)}$
- $4.30 \ 2.21 \ {\rm sr}$

- $4.31 \ 166 \ K$
- 4.33 289 K
- $4.34 \ 0.043 \ ^{\circ}C \ s^{-1}$
- $4.40 \sim 0.4 \ \mu m$
- 4.41 ${\sim}400~{\rm m}$
- 4.42 (a) 0.054; (b) 0.014; (c) The planetary albedo is 0.163, an increase of 8.9% due to the presence of the aerosol layer.
- 4.43 1%; 69.4 kg
- $4.46\ \mathrm{46\ km}$
- 4.47 (a) 80%; (b) 80%; (c) 3.00H
- 4.48 $\,\theta=30^\circ:$ 8.66 hPa, 47.4 km. $\theta=60^\circ:$ 5.00 hPa, 53.0 km

 $4.56\ 2.07$

- 5.13 An increase of 4. Oxidized.
- 5.14 0.600 ppbv
- $5.15 \sim 230\%$
- 5.17 $v = v_o \exp(-6\pi \eta RT/m)$ The stop distance is $v_o m/6\pi \eta r$
- 5.18 4 days, 150 years and 9 years
- 5.19 $\sim\!\!14~{\rm days}$
- 5.20 (c) $[O_3] = \frac{j[NO_2]}{k_1[NO]}$
- 5.23 (a) $\frac{1}{2} \frac{d[\text{NO}_2]}{dt} = k_1 [\text{NO}]^2 [\text{O}_2]$. Yes, because production of NO₂ varies as $[\text{NO}]^2$. (b) Reaction (5.17) produces NO₂ at a rate 5.8×10^4 faster than reaction (5.36).
- 5.24 9 years
- 5.25 (a) 19 days; (b) NMHC; (c) Because of its long residence time in the troposphere.
- 5.26 (a) $2O_3 \rightarrow 3O_2$; (b) O (g); (c) k_1 for step (i), and $k_2 [O_3] [O]$ for step (ii); (d) Step (ii); (e) $[O] \propto [O_3] [O_2]^{-1}$
- 5.27 $\sim 30\%$ decrease

5.29 (a) If (iia) dominates the net effect is

$$2O_3 + h\nu = 3O_2$$

If (iib) dominates, there is no net effect (the Cl atom in ClO never gets liberated).

(b)

$$\frac{d [O_3]}{dt} = -k_4 [CI] [O_3]$$

$$\frac{d [CI]}{dt} = j_2 [(CIO)_2] + k_3 [CIOO] [M] - k_4 [CI] [O_3]$$

$$\frac{d [(CIO)_2]}{dt} = k_1 [CIO]^2 [M] - j_2 [(CIO)_2]$$

$$\frac{d [CIOO]}{dt} = j_2 [(CIO)_2] - k_3 [CIOO] [M]$$
(c) $[CI] = \frac{2k_1 [M] [CIO]^2}{k_4 [O_3]}$
(d) $\frac{d [O_3]}{dt} = -2k_1 [M] [CIO]^2$
(e) $[O_3] \propto t^3???$

 $5.31\ 2057$

Chapter 6

6.10 100.6% 6.11 (a) 0.45µm; (b) 90%; (c) ~0.47µm 6.13 15 h 6.14 (a) 3.5%; (b) 2.75 cm 6.15 0.0461 N kg⁻¹; (b) 1.28°C 6.16 (a) LWC = $4\pi\rho_l r_e^3 N/3$; (b) LWC = $2\rho_l r_e \tau_C/3h$; LWP = $\frac{2}{3}\rho_l r_e \tau_C$ 6.17 -22.5°C, 12°C; 19°C 6.20 (b) $Q_2 = \rho \left[\frac{R_d T}{\epsilon e_s} + \frac{\epsilon L_w^2}{pT c_p} \right]$ 6.21 $h = wt - 2g\rho_l SG_l t^2/9\eta$ 6.22 1.8 g kg⁻¹ 6.23 76.3 min 6.24 0.67 mm; 16.4 min

- 6.25 $\ln \left[1 p(V,t)\right] = -\frac{V}{\beta} \int_{0}^{T_{t}} J_{LS} dT$
- 6.26 3×10^{13} ; 2 mg; 6 mm
- 6.27~0.5 mm; $7.2~\mu {\rm g}$
- $6.28\ 2.8\ \mathrm{min}$
- $6.29\ 30\ \mathrm{min}$
- $6.30 \ 1558 \ {\rm J}$
- $6.31~4\times10^{-3}~\mathrm{mm}$
- 6.32 Factors of 10^3 and 2×10^6 , respectively
- $6.33~0.5~\mathrm{mm}$

6.34
$$c \triangle T = w_l \left(10^{-3} L_f \right) + (w_s - w_i) \left(10^{-3} L_d \right)$$

- $6.35 \ 0.7^{\circ}\mathrm{C}$
- $6.36~{\sim}480~{\rm m}$
- $6.38\ 25.3\ \mathrm{km}$
- 6.39 3.4 km; 2.72 km

6.40 An increase from 4 to 6. (b) Both increase from 4 to 6.

- $7.7 \ 2.42 \ {\rm cm} \ {\rm day}^{-1}$
- 7.16 (a) 3.11×10^{-4} m s⁻² and 0.627×10^{-4} m s⁻². Both are directed upward, radially outward from the axis of rotation. (b) 29.1×10^{-4} m s⁻² directed downward toward the center of the Earth.
- 7.17 (b) 126 m
- 7.18 80 N
- 7.19 21 m s⁻¹ from the west
- 7.20 $1.57 \times 10^6 \text{ s}^{-1}$
- $7.21 \ 19.9 \ {\rm m \ s^{-1}}$
- 7.22 $|\mathbf{F}_s| = 3.63 \times 10^{-4} \text{ m s}^{-2}$, and $|\mathbf{P}| = 1.06 \times 10^{-3} \text{ m s}^{-2}$
- $7.26~9.01\times10^{-4}~{\rm K~s^{-1}}$ or 77.8 K day^{-1}. The sign is positive, indicative of warm advection.

- 7.27 Decreasing at a rate of 140 m day⁻¹.
- 7.34 (a) 64.6 m; 1.57 \times 10^{-5} s^{-1} (b) 1.62 \times 10^{-10} and 4.93 \times 10^{-10} s^{-2}, respectively; and (c) 7000 km
- $7.37\ 2 \times 10^{-3}$
- $7.40 \ 3.02 \times 10^{-5} \ {\rm s}^{-1}$
- $7.43 \ 14.7 \ {\rm m}$
- 7.44 120 m s⁻¹ from the west
- $7.45\,$ About a week

Chapter 8

- $8.12\ 62.5\ hPa$
- 8.13 25 Pa ${\rm m}^{-1}=250~{\rm hPa}~{\rm km}^{-1}$
- $8.14 \ 12 \ {\rm m \ s^{-1}}$
- $8.15\ 28\ {\rm m\ s^{-1}}$
- $8.16\ 36\ {\rm K}$
- $8.17 \ 1.103; \, 26 \ {\rm K}$
- $8.18\ 396\ {\rm Pa}\ {\rm km}^{-1}$
- $8.19 \ 1.256^{\circ} \mathrm{C \ km^{-1}}$
- $8.20\ 208\ \mathrm{km}$
- $8.21~61~\mathrm{cm}$

Chapter 9

 $9.8~{\sim}0.2^{\circ}\mathrm{C}^2$

9.10 Some, but not all, of the answers: Homogeneous for u wind at 1100 UTC. Stationary for v wind at location B. Isotropic at location A at 1100 UTC.

9.11

- (a) $20.21 \,^{\circ}\text{C}$
- (b) -0.286 m s^{-1}
- (c) $13.9 \,^{\circ}\mathrm{C}^2$
- (d) $4.92 \text{ (m s}^{-1})^2$
- (e) $-1.582 \text{ K m s}^{-1}$

9.13 $t_{\text{e-fold}} = 0.32 \cdot L_{\varepsilon} \cdot (TKE/m)_o^{-1/2}$

9.14 $\sim\!\!10~{\rm cm}$

9.15 (a)
$$\Delta t = \frac{\Delta z}{2} \left[\frac{P}{\pi v_g} \right]^{1/2}$$
 (b) $\nu_g = 1.5 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$

- 9.17 (a) 1.87 m s $^{-1};$ (b) -3.06 m; (c) 8.9 min; (d) ${\sim}4$ m s $^{-1}$
- 9.19 In kinematic units: (a) 0.1 K m s⁻¹; (b) 0.2 K m s⁻¹; or in dynamic units, (a) 123 W m⁻²; (b) 246 W m⁻².

9.22 (b)
$$z_i = \left[\frac{w_e}{\beta} - \frac{w_e}{\beta} - z_{i_o}\right] e^{-\beta t}$$

9.23

$$F_{Hs} = \frac{0.9F^*}{1 + \frac{\Delta q}{\gamma \cdot \Delta \theta}} \text{ and } F_{Es} = \frac{0.9F^*}{1 + \frac{\gamma \cdot \Delta \theta}{\Delta q}}$$

- $9.24 513 \mathrm{W} \mathrm{m}^{-2}$
- 9.26 (a) Stable: 0 to 0.1, 1.3 to 1.4, and 1.6 to 1.7 km ; (b) Neutral: 1.4 to 1.6 km ; (c) Unstable: 0.1 to 1.3 and 1.7 to 2.0 km.
- 9.27 $z_i = 1.6$ km, $\theta = 19^{\circ}$ C.
- 9.29 Use the Ball ratio, Eq. (9.25) to get the entrained heat flux, knowing F_{Hs} . Use Eq. (9.24) with (9.27) to get $F_{Ezi} = -0.2 F_{Hs} \cdot \Delta q / \Delta \theta$.

Chapter 10

- $10.7~{\sim}150~{\rm W}~{\rm m}^{-2}$
- $10.10 \ 4.0^{\circ}C$
- $10.12 \ 10 \ 8 \ {\rm W \ m^{-2}}$
- $10.13 \ \ 355 \ {\rm K}$
- $10.14 \ \ 6.24 \times 10^{15} \ {\rm W}$
- 10.15 (a) 46.4 versus 38.0 MJ m⁻² day⁻¹(see also Fig. 10.5)
- 10.16 (a) 0.53 K; (b) immediately after the eruption, $dT/dt = 1.95 \times 10^{-7}~{\rm K}~{\rm s}^{-1}$ or 0.0186 K day^{-1}
- 10.18 Answer not available yet.
- $10.19\,$ a factor of $6\,$

The answers to the remaining exercises in this chapter are not available yet.