Answers to Questions

Chapter 1

1.923 .7 day
1.1110 m
$1.12-1^{\circ} \mathrm{C} \mathrm{m}^{-1}=-1,000^{\circ} \mathrm{C} \mathrm{km}^{-1}$, a very strong inversion!!
$1.13 p \simeq 800 \mathrm{hPa}$ and $\rho \simeq 1.00 \mathrm{~kg} \mathrm{~m}^{-3}$.
$1.16 \simeq 20 \%$
1.178 km
1.18 The average mass per unit area of water vapor is $\sim 30 \mathrm{~kg} \mathrm{~m}^{-3}$ rather than $100 \mathrm{~kg} \mathrm{~m}^{-3}$ as stated in the text. Using this more realistic value yields a depth of $\sim 3 \mathrm{~cm}$.
1.198 km
$1.201 .18 \times 10^{11} \mathrm{~kg} \mathrm{~s}^{-1}$
$1.212 .46 \mathrm{~mm} \mathrm{~s}^{-1}$

Chapter 2

$2.81 .5 \times 10^{11} \mathrm{~kg} \mathrm{~s}^{-1}$ for the Gulf stream versus $1.18 \times 10^{11} \mathrm{~kg} \mathrm{~s}^{-1}$ for the Hadley cell
2.91 .7 mm day
2.1078 m
2.15 (a) ~ 700 years, (b) ~ 300 years
2.16 The concentration of CO_{2} would increase to 1567 ppm , roughly 4 times its current value. The concentration of O_{2} would drop by $\sim 1 \%$.
$2.182 .36 \times 10^{-3} \times c_{0}$
$2.1937 \times 10^{5} \mathrm{~Pa} ; \sim 3 \%$
$2.20 \sim 0.1 \mathrm{~kg} \mathrm{~m}^{-2}$
2.21 The present mass is $\sim 39 \%$ of the mass at the time of the LGM

Chapter 3

$3.1943 .2 ; 192 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
$3.20 T_{v}-T \simeq 1^{\circ} \mathrm{C}$
$3.2287 .4^{\circ} \mathrm{C}$
$3.233377 \mathrm{~m}^{3}$
$3.25 \sim 4 \mathrm{~m}$ too high
$3.26 \sim 12^{\circ} \mathrm{C}$
3.275654 m
$3.280 .98^{\circ} \mathrm{C} ; 20 \mathrm{~m}$
3.29 A rise of $8.9^{\circ} \mathrm{C}$
3.311064 m
$3.323 .8 \times 10 \mathrm{~J}$
$3.33-86.2^{\circ} \mathrm{C} ; 643 \mathrm{hPa}$
3.345 .23 kg
$3.351 .51 \times 10^{6} \mathrm{~J}$
$3.3766^{\circ} \mathrm{C}$ from the chart versus 64.5 from Eq. (3.54) with $R_{d} / c_{p}=0.286$. The difference is due to the fact that the xhart is based on $R_{d} / c_{p}=0.288$. The actual values of c_{p} and c_{v} for dry air are known only within an accuracy of around $\pm 2.5 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$.
3.38 (a) $K_{m}=0.20 H$; (b) $\frac{1}{c_{s}} \frac{d c_{s}}{d T}=0.20 \frac{c_{v}}{R_{d} T}$
$3.390 .84 \%$
3.400 .14 g
$3.4133 .7^{\circ} \mathrm{C} ; 1.15 \mathrm{~kg} \mathrm{~m}^{-3}$
$3.422 .81 \mathrm{hPa} ; 15.3^{\circ} \mathrm{C}$
$3.436 .0 \mathrm{~g} \mathrm{~kg}^{-1}$
$3.45 \sim 2.5^{\circ} \mathrm{C}$
3.46 (a) $5.1 \mathrm{~g} \mathrm{~kg}^{-1}, 47 \%, 9.3^{\circ} \mathrm{C}$; (b) $5.1 \mathrm{~g} \mathrm{~kg}^{-1}, 75 \%, 4.5^{\circ} \mathrm{C}, 288 \mathrm{~K}, 9.3^{\circ} \mathrm{C}$; (c) $4.3 \mathrm{~g} \mathrm{~kg}^{-1}, 100 \%,-1.1^{\circ} \mathrm{C}, 290 \mathrm{~K}, 9.3^{\circ} \mathrm{C}$; (d) 847 hPa
3.47 (a) $18^{\circ} \mathrm{C}$; (b) $62^{\circ} \mathrm{C}$; (c) the equivalent potential temperature $\left(\theta_{e}\right)$; (d) $\sim 20^{\circ} \mathrm{C}$
$3.4814^{\circ} \mathrm{C} ; 19.8^{\circ} \mathrm{C}$
3.53 (a) AB unstable; BC neutral; CD neutral; DE stable; EF stable; FG stable. (b) All layers are convectively unstable except CD, which is convectively neutral.
3.54 (b) $1.17 \mathrm{~kg} \mathrm{~m}^{-3}$
3.58 53.6 J; 146.4 J
3.596 .93 min
3.60 (a) $K\left(T_{o}-T_{i}\right)^{2} / T_{i}$ (b) 125%
3.61 An increase of $17.3 \mathrm{~J} \mathrm{~kg}^{-1}$.
3.62 An increase of $2.0 \mathrm{~J} \mathrm{~kg}^{-1}$.
$3.6488 .7^{\circ} \mathrm{C}$
3.65 A decrease of $0.0074^{\circ} \mathrm{C}$.

Chapter 4

$4.125450 \mu \mathrm{~m}$
$4.140 .31 \mathrm{~W} \mathrm{~m}^{-2}$
$4.150 .25 \mathrm{~W} \mathrm{~m}^{-2}$ and $0.06 \mathrm{~W} \mathrm{~m}^{-2}$ reflected
4.16 (a) 0.84 (b) 0.74
4.17 $537 \mathrm{~W} \mathrm{~m}^{-2} ; 46.4 \mathrm{MJ} \mathrm{m}^{-2}$ day $^{-1}$
$4.18440 \mathrm{~W} \mathrm{~m}^{-2} ; 38.0 \mathrm{MJ} \mathrm{m}^{-2}$ day $^{-1}$
4.19 Answer not available yet
$4.201 .4 \times 10^{-10}$
4.21 (a) $1.7^{\circ} \mathrm{C}$ (b) $0.91^{\circ} \mathrm{C}$
$4.233 .85 \times 10^{26} \mathrm{~W}$
$4.2787 \mathrm{~W} \mathrm{~m}^{-2}$. In contrast, the geothermal energy emitted by the earth is estimated to be $\sim 0.06 \mathrm{~W} \mathrm{~m}^{-2}$.
4.28 Answer not available yet.
$4.292 .72 \times 10^{6} \mathrm{~s}$ (or 31.5 days)
4.302 .21 sr
4.31166 K
4.33289 K
$4.340 .043{ }^{\circ} \mathrm{C} \mathrm{s}^{-1}$
$4.40 \sim 0.4 \mu \mathrm{~m}$
$4.41 \sim 400 \mathrm{~m}$
4.42 (a) 0.054 ; (b) 0.014 ; (c) The planetary albedo is 0.163 , an increase of 8.9% due to the presence of the aerosol layer.
$4.431 \% ; 69.4 \mathrm{~kg}$
4.4646 km
4.47 (a) 80%; (b) 80%; (c) $3.00 H$
$4.48 \theta=30^{\circ}: 8.66 \mathrm{hPa}, 47.4 \mathrm{~km} . \theta=60^{\circ}: 5.00 \mathrm{hPa}, 53.0 \mathrm{~km}$
4.562 .07

Chapter 5

5.13 An increase of 4. Oxidized.
5.140 .600 ppbv
$5.15 \sim 230 \%$
$5.17 v=v_{o} \exp (-6 \pi \eta R T / m)$ The stop distance is $v_{o} m / 6 \pi \eta r$
5.184 days, 150 years and 9 years
$5.19 \sim 14$ days
5.20 (c) $\left[\mathrm{O}_{3}\right]=\frac{j\left[\mathrm{NO}_{2}\right]}{k_{1}[\mathrm{NO}]}$
5.23 (a) $\frac{1}{2} \frac{d\left[\mathrm{NO}_{2}\right]}{d t}=k_{1}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$. Yes, because production of NO_{2} varies as [NO$]^{2}$. (b) Reaction (5.17) produces NO_{2} at a rate 5.8×10^{4} faster than reaction (5.36).
5.249 years
5.25 (a) 19 days; (b) NMHC; (c) Because of its long residence time in the troposphere.
5.26 (a) $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$; (b) $\mathrm{O}(\mathrm{g})$; (c) k_{1} for step (i), and $k_{2}\left[\mathrm{O}_{3}\right][\mathrm{O}]$ for step (ii); (d) Step (ii); (e) $[\mathrm{O}] \propto\left[\mathrm{O}_{3}\right]\left[\mathrm{O}_{2}\right]^{-1}$
$5.27 \sim 30 \%$ decrease
5.29 (a) If (iia) dominates the net effect is

$$
2 \mathrm{O}_{3}+h \nu=3 \mathrm{O}_{2}
$$

If (iib) dominates, there is no net effect (the Cl atom in ClO never gets liberated).
(b)

$$
\begin{aligned}
\frac{d\left[\mathrm{O}_{3}\right]}{d t} & =-k_{4}[\mathrm{Cl}]\left[\mathrm{O}_{3}\right] \\
\frac{d[\mathrm{Cl}]}{d t} & =j_{2}\left[(\mathrm{ClO})_{2}\right]+k_{3}[\mathrm{ClOO}][\mathrm{M}]-k_{4}[\mathrm{Cl}]\left[\mathrm{O}_{3}\right] \\
\frac{d\left[(\mathrm{ClO})_{2}\right]}{d t} & =k_{1}[\mathrm{ClO}]^{2}[\mathrm{M}]-j_{2}\left[(\mathrm{ClO})_{2}\right] \\
\frac{d[\mathrm{ClOO}]}{d t} & =j_{2}\left[(\mathrm{ClO})_{2}\right]-k_{3}[\mathrm{ClOO}][\mathrm{M}]
\end{aligned}
$$

(c) $[\mathrm{Cl}]=\frac{2 k_{1}[\mathrm{M}][\mathrm{ClO}]^{2}}{k_{4}\left[\mathrm{O}_{3}\right]}$
(d) $\frac{d\left[\mathrm{O}_{3}\right]}{d t}=-2 k_{1}[\mathrm{M}][\mathrm{ClO}]^{2}$
(e) $\left[\mathrm{O}_{3}\right] \propto t^{3}$???
5.312057

Chapter 6

$6.10100 .6 \%$
6.11 (a) $0.45 \mu \mathrm{~m}$; (b) 90%; (c) $\sim 0.47 \mu \mathrm{~m}$
6.1315 h
6.14 (a) 3.5%; (b) 2.75 cm
$6.150 .0461 \mathrm{~N} \mathrm{~kg}^{-1}$; (b) $1.28^{\circ} \mathrm{C}$
6.16 (a) $\mathrm{LWC}=4 \pi \rho_{l} r_{e}^{3} N / 3 ;$ (b) $\mathrm{LWC}=2 \rho_{l} r_{e} \tau_{C} / 3 h ;$ LWP $=\frac{2}{3} \rho_{l} r_{e} \tau_{C}$
$6.17-22.5^{\circ} \mathrm{C}, 12^{\circ} \mathrm{C} ; 19^{\circ} \mathrm{C}$
6.20 (b) $Q_{2}=\rho\left[\frac{R_{d} T}{\varepsilon e_{s}}+\frac{\varepsilon L_{v}^{2}}{p T c_{p}}\right]$
$6.21 h=w t-2 g \rho_{l} S G_{l} t^{2} / 9 \eta$
$6.221 .8 \mathrm{~g} \mathrm{~kg}^{-1}$
6.2376 .3 min
$6.240 .67 \mathrm{~mm} ; 16.4 \mathrm{~min}$
$6.25 \ln [1-p(V, t)]=-\frac{V}{\beta} \int_{0}^{T_{t}} J_{L S} d T$
$6.263 \times 10^{13} ; 2 \mathrm{mg} ; 6 \mathrm{~mm}$
$6.270 .5 \mathrm{~mm} ; 7.2 \mu \mathrm{~g}$
6.282 .8 min
6.2930 min
6.301558 J
$6.314 \times 10^{-3} \mathrm{~mm}$
6.32 Factors of 10^{3} and 2×10^{6}, respectively
6.330 .5 mm
$6.34 c \Delta T=w_{l}\left(10^{-3} L_{f}\right)+\left(w_{s}-w_{i}\right)\left(10^{-3} L_{d}\right)$
$6.350 .7^{\circ} \mathrm{C}$
$6.36 \sim 480 \mathrm{~m}$
6.3825 .3 km
$6.393 .4 \mathrm{~km} ; 2.72 \mathrm{~km}$
6.40 An increase from 4 to 6 . (b) Both increase from 4 to 6.

Chapter 7

$7.72 .42 \mathrm{~cm} \mathrm{day}^{-1}$
7.16 (a) $3.11 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$ and $0.627 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$. Both are directed upward, radially outward from the axis of rotation. (b) $29.1 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$ directed downward toward the center of the Earth.
7.17 (b) 126 m

7.1880 N

$7.1921 \mathrm{~m} \mathrm{~s}^{-1}$ from the west
$7.201 .57 \times 10^{6} \mathrm{~s}^{-1}$
$7.2119 .9 \mathrm{~m} \mathrm{~s}^{-1}$
$7.22\left|\mathbf{F}_{s}\right|=3.63 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-2}$, and $|\mathbf{P}|=1.06 \times 10^{-3} \mathrm{~m} \mathrm{~s}^{-2}$
$7.269 .01 \times 10^{-4} \mathrm{~K} \mathrm{~s}^{-1}$ or $77.8 \mathrm{~K}^{\text {day }}{ }^{-1}$. The sign is positive, indicative of warm advection.
7.27 Decreasing at a rate of 140 m day $^{-1}$.
7.34 (a) $64.6 \mathrm{~m} ; 1.57 \times 10^{-5} \mathrm{~s}^{-1}$ (b) 1.62×10^{-10} and $4.93 \times 10^{-10} \mathrm{~s}^{-2}$, respectively; and (c) 7000 km
7.372×10^{-3}
$7.403 .02 \times 10^{-5} \mathrm{~s}^{-1}$
7.4314 .7 m
$7.44120 \mathrm{~m} \mathrm{~s}^{-1}$ from the west
7.45 About a week

Chapter 8

8.1262 .5 hPa
$8.1325 \mathrm{~Pa} \mathrm{~m}^{-1}=250 \mathrm{hPa} \mathrm{km}^{-1}$
$8.1412 \mathrm{~m} \mathrm{~s}^{-1}$
$8.1528 \mathrm{~m} \mathrm{~s}^{-1}$
8.1636 K
8.17 1.103; 26 K
$8.18396 \mathrm{~Pa} \mathrm{~km}^{-1}$
$8.191 .256^{\circ} \mathrm{C} \mathrm{km}^{-1}$
8.20208 km
8.2161 cm

Chapter 9

$9.8 \sim 0.2^{\circ} \mathrm{C}^{2}$
9.10 Some, but not all, of the answers: Homogeneous for u wind at 1100 UTC.

Stationary for v wind at location B. Isotropic at location A at 1100 UTC.
9.11
(a) $20.21^{\circ} \mathrm{C}$
(b) $-0.286 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $13.9^{\circ} \mathrm{C}^{2}$
(d) $4.92\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2}$
(e) $-1.582 \mathrm{~K} \mathrm{~m} \mathrm{~s}^{-1}$
$9.13 t_{\mathrm{e} \text {-fold }}=0.32 \cdot L_{\varepsilon} \cdot(T K E / m)_{o}^{-1 / 2}$
$9.14 \sim 10 \mathrm{~cm}$
9.15 (a) $\Delta t=\frac{\Delta z}{2}\left[\frac{P}{\pi v_{g}}\right]^{1 / 2}$ (b) $\nu_{g}=1.5 \times 10^{-6} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
9.17 (a) $1.87 \mathrm{~m} \mathrm{~s}^{-1}$; (b) -3.06 m ; (c) 8.9 min ; (d) $\sim 4 \mathrm{~m} \mathrm{~s}^{-1}$
9.19 In kinematic units: (a) $0.1 \mathrm{~K} \mathrm{~m} \mathrm{~s}^{-1}$; (b) $0.2 \mathrm{~K} \mathrm{~m} \mathrm{~s}^{-1}$; or in dynamic units, (a) $123 \mathrm{~W} \mathrm{~m}^{-2}$; (b) $246 \mathrm{~W} \mathrm{~m}^{-2}$.
9.22 (b) $z_{i}=\left[\frac{w_{e}}{\beta}-\frac{w_{e}}{\beta}-z_{i_{o}}\right] e^{-\beta t}$
9.23

$$
F_{H s}=\frac{0.9 F^{*}}{1+\frac{\Delta q}{\gamma \cdot \Delta \theta}} \text { and } F_{E s}=\frac{0.9 F^{*}}{1+\frac{\gamma \cdot \Delta \theta}{\Delta q}}
$$

$9.24513 \mathrm{~W} \mathrm{~m}^{-2}$
9.26 (a) Stable: 0 to $0.1,1.3$ to 1.4 , and 1.6 to 1.7 km ; (b) Neutral: 1.4 to 1.6 km ; (c) Unstable: 0.1 to 1.3 and 1.7 to 2.0 km .
$9.27 z_{i}=1.6 \mathrm{~km}, \theta=19^{\circ} \mathrm{C}$.
9.29 Use the Ball ratio, Eq. (9.25) to get the entrained heat flux, knowing $F_{H s}$. Use Eq. (9.24) with (9.27) to get $F_{E z i}=-0.2 F_{H s} \cdot \Delta q / \Delta \theta$.

Chapter 10

$10.7 \sim 150 \mathrm{~W} \mathrm{~m}^{-2}$
$10.104 .0^{\circ} \mathrm{C}$
$10.12108 \mathrm{~W} \mathrm{~m}^{-2}$
10.13355 K
$10.146 .24 \times 10^{15} \mathrm{~W}$
10.15 (a) 46.4 versus $38.0 \mathrm{MJ} \mathrm{m}^{-2}$ day $^{-1}$ (see also Fig. 10.5)
10.16 (a) 0.53 K ; (b) immediately after the eruption, $d T / d t=1.95 \times 10^{-7} \mathrm{~K}$ s^{-1} or $0.0186 \mathrm{~K} \mathrm{day}^{-1}$
10.18 Answer not available yet.
10.19 a factor of 6

The answers to the remaining exercises in this chapter are not available yet.

