Empirical Formula for Saturation Pseudoadiabats and Saturation Equivalent Potential Temperature

ALAN K. BETTS AND FRANK J. DUGAN

Dept. of Atmospheric Science, Colorado State University, Fort Collins 80521

9 January 1973

Exact water saturation pseudoadiabats can be constructed by the integration of the equation (Saunders, 1957)

$$(C_p + r_s C) \frac{dT}{T} - \frac{Rdp_u}{p_u} + d\left(\frac{L_v r_s}{T}\right) = 0, \tag{1}$$

where C_p , R, p_a are the specific heat, gas constant and pressure of dry air; r_s , L_v the saturation mixing ratio and latent heat of vaporization of water; C the specific heat of liquid water; and T the mixture temperature. Alternatively, one may integrate the equivalent equation (e.g., Betts, 1973)

$$C_{pm}\frac{dT}{T} - R_m \frac{dp}{p} + L_v \frac{dq_s}{T} = 0, \qquad (2)$$

where C_{pm} , R_m , p are the specific heat, gas constant and total pressure of the air-vapor mixture; and q_s is the saturation specific humidity.

The approximate formula for saturation equivalent potential temperature,

$$\theta_{ES} \approx \theta \exp\left(\frac{L_v r_s}{C_n T}\right),$$
 (3)

can be derived from (1) or (2) (Rossby, 1938; Hess, 1959; Holton, 1972). The same formula (3), with mixing ratio r replacing r_s , has been used to define the equivalent potential temperature of an unsaturated air parcel. The value of (3) is that it is a function only of parcel pressure and temperature. However, its derivation from (2) clearly involves (among other approximations) the neglect of the variation of T in the third term, which decreases as q_s decreases along the pseudoadiabat.

Rather than use a value of T^{-1} averaged along the pseudoadiabat with respect to q_s (or approximately r_s), one can match the exact pseudoadiabats to high accuracy by choosing a value of A in the empirical formula

$$\theta_{ES} = \theta \exp\left(\frac{Ar_s}{T}\right). \tag{4}$$

This generates a more accurate formula than (3) for θ_{ES} , but one which is still only a function of the state variables (p,T) of a parcel.

The Smithsonian Meteorological Tables (1971) tabulate the water saturation pseudoadiabats for 2C increments of saturation wet bulb potential temperature θ_s , and give corresponding values of θ_{ES} for the same pseudoadiabats. Eq. (4) generates these pseudoadiabats to an accuracy of ± 0.2 K in θ_{ES} at all pressures, and

TABLE 1.

θ, (°C)	$^{ heta_{ES}}_{(^{\circ}\mathrm{K})}$	$(^{\circ}C)$	$^{ heta_{ES}}_{(^{\circ}\mathrm{K})}$
-20	255.2	10	304.2
-18	257.6	12	309.4
-16	260.0	14	315.0
-14	262.5	16	321.1
-12	265.1	18	327.8
-10	267.8	20	335.2
-8	270.6	22	343.3
-6	273.6	$\overline{24}$	352.3
-4	276.7	26	362.3
$-\bar{2}$	279.9	$\overline{28}$	373.4
$\bar{\mathbf{o}}$	283.3	30	385.8
2	287.0	32	399.8
$\bar{4}$	290.8	34	415.6
4 6	295.0	36	433.6
8	299.4	38	454.0
_		40	477.5

for values of θ_s from -20 to 40C with

$$A = 2.625 + 0.0014\theta_s,\tag{5}$$

for saturation mixing ratios r_s in gm kg⁻¹.

A separate problem is the variability of values used for the specific heat of dry air. The Smithsonian pseudo-adiabat tabulations are apparently based on $R=2.871 \times 10^6$ ergs gm⁻¹ (°K)⁻¹, $C_p=0.238$ cal gm⁻¹ (°K)⁻¹, giving $\epsilon=R/C_p=0.288$. However, at low pressure, where θ_{ES} becomes θ , the tabulated values require $\epsilon=0.2875$. Using the currently recommended value for C_p of 0.240 cal gm⁻¹ (°K)⁻¹ (loc. cit., p. 289) and the corresponding $\epsilon=0.286$ gives slightly different pseudo-adiabats. A corresponding formula for A in (4) is

$$A = 2.61 + 0.0014\theta_s. \tag{6}$$

The variation of A with θ_{ϵ} (or θ_{ES}) is rather small, and can be neglected for some purposes. Given an exact tabulation, the ice saturation pseudoadiabats could be approximated using (4), and a different value for A.

Table 1 shows the conversion between θ_s and θ_{ES} based on Eqs. (4) and (6).

Acknowledgment. This research was supported by the Atmospheric Sciences Section, National Science Foundation, under Grant GA-36323.

REFERENCES

Betts, A. K., 1973: Non-precipitating cumulus convection and its parameterization. Quart. J. Roy. Meteor. Soc., 99, 178-196.

Hess, S. L., 1959: Introduction to Theoretical Meteorology. New York, Holt, Rinehart, and Winston, 51-57.

Holton, J. R., 1972: An Introduction to Dynamic Meteorology. New York, Academic Press, 307-308.

Rossby, C. G., 1938: Thermodynamics applied to air mass analysis. MIT Meteor. Papers, 1, No. 3, Chap. 1.

Saunders, P. M., 1957: The thermodynamics of saturated air: A contribution to the classical theory. Quart. J. Roy. Meteor. Soc., 83, 342-350.

Smithsonian Meteorological Tables, 1971: Sixth Revised Edition, Fifth Reprint. Washington, D. C., Table 78.