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ABSTRACT

Several new formulas for pseudoadiabatic equivalent potential temperature (EPT) are devised and com-

pared to previous ones. The maximum errors of all the formulas are determined from calculations on a dense

grid of points in the region of a thermodynamic diagram defined by wet-bulb potential temperature #328C

(EPT # 400 K) and pressure between 100 and 1050 mb. One of the new formulas has an accuracy of 0.015 K in

the specified region. Finding the imitation first law of thermodynamics that they satisfy approximately reveals

how the formulas work.

1. Introduction

There are several formulas for equivalent potential

temperature (EPT) in the literature (Bolton 1980; Bryan

2008). Rossby (1932) devised the first such formula by

dropping an intractable term from the equation gov-

erning pseudoadiabatic water-saturation processes. This

term is part of the entropy of water vapor. Its omission is

equivalent to setting the specific heat of water to zero.

Owing to the missing entropy, the Rossby formula un-

derestimates the EPT by several degrees in very warm

and moist environments. By using an optimized constant

latent heat instead of the actual one, which is a linear

function of temperature, Bryan (2008) obtained a simple

formula that is accurate to about half a degree. His for-

mula is associated with a simple version of the first law of

thermodynamics, which is useful in some theoretical

studies. Except at very cold temperatures where latent

heat release is small, Bryan’s constant latent heat is larger

than the actual one. The upward adjustment in latent

heat compensates to a large extent for the missing term.

Bolton’s (1980) modification of the Betts and Dugan

(1973) formula is similar to Bryan’s formula, and is also

associated with a constant latent heat (Davies-Jones 2008).

The most accurate formula to date is from Bolton

(1980). It computes EPT to accuracy, relative to nu-

merical solutions of the governing equation, better than

0.02 K. Note that accuracies quoted in the literature are

based on a limited number of calculations (e.g., Bolton’s

Table 3 and Bryan’s Table 1). Bolton’s formula has

three adjustable parameters and is hard to interpret

physically.

In this paper, the gap between Bryan’s formula with

one adjustable parameter and Bolton’s very accurate

formula with three is bridged by constructing formulas

that have two degrees of freedom and intermediate ac-

curacies. These new formulas are obtained by optimally

adjusting the line in a graph of latent heat versus tem-

perature instead of constraining it to have zero slope.

Also, understanding of how the formulas work is gained

by working backward from the formulas to an imitation

first law of thermodynamics that they satisfy. This pro-

cedure identifies the adjustments needed to compensate

for setting the specific heat of water to zero. Bolton’s

formula is not amenable to this approach so a very sim-

ilar, but more manageable formula with the same accu-

racy is devised. Last, maximum errors of each formula are

determined more systematically than previously by cal-

culating EPT at 1209 points in a grid covering a wide area

of a thermodynamic diagram.

2. EPT formulas

As pointed out by Davies-Jones (2008), almost all of

the formulas for the EPT uE of an air parcel have the

following form:

Corresponding author address: Dr. Robert Davies-Jones, NOAA/

National Severe Storms Laboratory, National Weather Center,

120 David L. Boren Blvd., Norman, OK 73072-7323.

E-mail: bob.davies-jones@noaa.gov

SEPTEMBER 2009 N O T E S A N D C O R R E S P O N D E N C E 3137

DOI: 10.1175/2009MWR2774.1



u
E
* 5 Q exp

L
0
*� L

1
*(T

L
� C)

c
pd

T
L

r(1 1 k
2
r)

" #
, (2.1)

where L0
* (.0), L1

* ($0), and k2 ($0) are constants, uE
* is

the estimate of uE, TL is the temperature at the lifting

condensation level (LCL), and r is the mixing ratio. All

symbols and a few useful relationships are listed in the

appendix. The quantity Q is either the potential tem-

perature u of moist air, which is conserved in unsatu-

rated isentropic motion, or the potential temperature

of dry air at the LCL, uDL. These formulas apply to all

levels because TL, uDL, r, and e can be replaced by TK,

uD, rs(TK, p), and es(TK), respectively, above the LCL.

Associated with (2.1) is the approximate equation for

pseudoadiabatic ascent:
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and the adjusted entropy:
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The first and least accurate formula for EPT is the one

devised by Rossby:
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where uE9 denotes the Rossby EPT and L is the actual

latent heat. It underestimates the actual EPT by up to 58

in extremely humid air masses because it uses the actual

latent heat L [ L0 2 L1(TL 2 C) and ignores the term

involving the specific heat of water in the entropy for-

mulation. However, it sufficed for its original purpose,

the identification of air masses. Because the omitted

entropy term cwrs d lnTK is positive, uE9 is always an un-

derestimate of uE. The Rossby formula has no parame-

ter that can be adjusted to compensate for the missing

entropy. A further approximation consists of replacing

uDL by u (Iribarne and Godson 1973, p. 122).

When k2 5 0, comparison of (2.1) and (2.4) shows that

we can regard L* [ L0
* 2 L1

*(TL 2 C) as a surrogate

for L. We can obtain more accurate formulas for EPT by

adjusting the two latent heat coefficients. Generally,

formulas with more degrees of freedom (the number of

independent parameters that are varied to obtain a best

fit to data) match the data more accurately. The third

degree of freedom, k2, is needed for a very accurate fit.

Using this approach Betts and Dugan (1973), Simpson

(1978), Bolton (1980), and Bryan (2008) have devised

formulas that are similar to (2.4), but that match the

exact pseudoadiabats far better. Since the equations in

Bolton’s paper are referenced many times, we will

preface his equations numbers with a ‘‘B.’’ Similarly,

Bryan’s (2008) equations are prefaced with ‘‘Br.’’ We do

not consider Simpson’s formula [(B33) after Bolton’s

modification] further because it is less accurate than

(B38) and (B39), has a more cumbersome form, assumes

that uD is conserved during adiabatic ascent to the LCL,

and is not easily associated with an imitation first law of

thermodynamics. Bolton simplified Betts and Dugan’s

(1973) formula to
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L
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which is equivalent to (B35). This has one degree of

freedom, L0
*, an optimum constant value of latent heat.

Bryan’s (2008) formula (Br13) similarly has one degree

of freedom. It has the following form:
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with L* 5 L
0
* 5 2.555 3 106 J kg21. Here, the relative

humidity H has been introduced to avoid having to

compute TL, and uD is used instead of u.

Bolton’s two new formulas, (B38) and (B39), are the

most accurate to date. They have the form (2.1) with

k2 6¼ 0 so they both contain a r2 term. The difference

between them is the use of uDL in (B39) and u in the less

precise (B38). Although (B38) ostensibly has three de-

grees of freedom, it in fact has only two because L* is

proportional to L (i.e., L0
* and L1

* are not varied inde-

pendently). Equation (B39) does have three degrees of

freedom, and this seems to be the number required for an

estimate with maximum error (relative to the results of

numerical integration of the differential equation gov-

erning pseudoadiabatic ascent) to within 0.03 K. The

actual error is around 0.2 K, owing mainly to the specific

heat at constant pressure for dry air, assumed to be a

constant, varying slightly with temperature and pressure.

The corresponding error in pseudo-wet-bulb temperature

is less than 0.2 K (Davies-Jones 2008).

The third-order term, 2k2L1
*(TL 2 C)r2, in (2.1) is

much smaller in magnitude than the term k2L0
*r2. When

this term is neglected, (2.1) simplifies to
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where K2 (’k2L
0
*) is a constant. A formula of this form

that is as accurate as (B39) is developed later. Note

that all the formulas with k2 5 0 are included in this

form.

3. The formulas’ imitation first law of
thermodynamics

In many cloud models, simplified versions of the first

law of thermodynamics are used (Wilhelmson 1977).

Only some of these are exact differentials for pseu-

doadiabatic processes and so have exact corresponding

analytical formulas for EPT. On the other hand, the

approximation to the entropy form of the first law

(Holton 1992, p. 51) that corresponds to an analytical

approximate formula for EPT can always be found by

differentiating the formula as in (2.1) and (2.2).

For use in theoretical studies, Bryan (2008) found an

EPT formula that is associated with a simplified version

of the first law. Here, we work backward from the en-

tropy formulation to find an imitation first law that the

formulas satisfy with the purpose of understanding how

the formulas work. As is customary, we neglect the ice

phase, assume that the phases of water are in equilib-

rium (so that there is no supersaturation) and that the

volume of any liquid water in the parcel is negligible,

and consider the two extreme cases of adiabatic ascent

of air that is saturated with respect to a plane surface of

water (Bryan 2008). In the first extreme case, the liquid

water remains in the parcel and the total water mixing

ratio, Q [ r 1 rw, is constant. This is a reversible process

(Saunders 1957) and the liquid water content is said to

be adiabatic. The second case is the pseudoadiabatic

process where condensate falls out of the parcel imme-

diately after it forms. Normally, the liquid water content

in clouds lies between the two extremes (Wilhelmson

1977) although occasionally it may exceed the adiabatic

value.

For the reversible process, the differential equation

governing entropy has the exact integral:
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[Emanuel 1994, Eq. (4.5.9)]. After multiplying the dif-

ferential form of (3.1) by TK and using (B23), the ideal

gas laws for dry air and vapor, and the Clausius–

Clapeyron equation:
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where h [ (cpd 1 Qcw)TK 1 Lr is the specific moist

(reversible) enthalpy (Emanuel 1994, p. 118). By ap-

plying Kirchoff’s equation:
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In the pseudoadiabatic process, the liquid water is

removed immediately from the parcel (rw 5 0) so total

water is no longer conserved. The entropy, EPT and first

law are now
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where Y(TK) [ r/TK and T0 is a very cold temperature

where the integrand is effectively zero. The integral term

in (3.6) is part of the entropy of water vapor. It is not zero

because, in the pseudoadiabatic process, water condenses

and then is removed instantly, along with its entropy, as

the parcel is rising and cooling, not while it is maintained

at a constant temperature (Bolton 1980).

The exact formula for uE is (3.7), but it is not useful

because it contains an integral. Since the integral is not

an exact differential, the integration has to be performed

numerically along a pseudoadiabat. This is tantamount

to generating pseudoadiabats by stepwise numerical

integration so nothing has been gained. Useful formulas
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for sp and uE that depend only on the initial and final

states of the parcel have either ignored this term or re-

placed it implicitly by a compensating term that is an

exact differential. Alternatively, we can set cw 5 0 and

explicitly adjust some other coefficients to minimize the

resulting error. This is the approach adopted here.

In fact, the formulas that have the simplified form in

(2.7) may all be obtained by setting cw 5 0, which

eliminates the computationally expensive integral term,

and adjusting L (and K2 if nonzero) to minimize error.

In other words, c
w

/ c
w
* 5 0, L

0
/ L

0
* and L

1
/ L

1
*

where the superscript asterisk denotes that the coeffi-

cients have been adjusted. This gives us the estimate
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The EPT estimate, uE
*, should be conserved below the

LCL. We can ensure this by integrating the entropy

equation just for the pseudoadiabatic part of the ascent,

and evaluating the constant of integration at the LCL.

This yields
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We now find that an imitation first law that corre-

sponds to (3.9). In turns out that in the temperature

range 2478 , TK 2 C # 328C, 1 , L*/L , 1.06 for the

formulas with Q 5 uD, so to a quite good approximation

we can use (3.2) with L* instead of L. From (3.9a) and

the modified (3.2), we obtain
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Since r2 varies much more rapidly than TK at high mixing

ratios where the last term is important, we can approx-

imate (3.10) by
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is an enthalpy that exists in this simple form because

c
w
* 5 0. Expanding (3.12) gives us the following ‘‘first law’’:
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If we assume Kirchoff’s Eq. (3.4) for the adjusted pa-

rameters, then we can define an adjusted specific heat of

water vapor, c
py
* 5 2L

1
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Bryan (2008) set L1
* 5 0 (and K2 5 0). Then, (3.6), (3.7),

and (3.9) reduce to (Br11), (Br13), and (Br10), respec-

tively, and the enthalpy becomes h*5 c
pd

T
K

1 L
0
*r.

We can see how the formulas work by comparing (3.8)

and (3.14). The adjustment of the specific heat of water to

zero and Kirchoff’s equation makes the specific heat of wa-

ter vapor negative (or zero if L1
* 5 0). Thus, the specific heat

of moist air is reduced artificially. From a first-law view-

point, an artificial increase in latent heat, (L* 2 L) dr, is

required to compensate for the decrease in specific heat.

The small r2 term is extra compensation needed for very

accurate calculations of very warm EPTs. From an en-

tropy viewpoint, the entropy increase associated with the

increase in latent heat is needed to compensate the en-

tropy of water vapor for the part that is missing.

Which of the forms (3.9a) or (3.9b) is preferable?

Equation (3.9a) has the advantage that it does not re-

quire computation of temperature at the LCL. But,

unlike (3.9b), it does not conserve uE below the LCL

(Bryan 2008). Thus, a disadvantage of (3.9a) is the in-

troduction of additional error below the LCL as shown

below. Since r is constant below the LCL, the integrand

in (3.7) has an antiderivative and so (3.7) becomes
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where T1 is an arbitrary constant of integration. Thus, by

conservation of uE and (3.15), uDL and uD are related by
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Substituting for uDL in (3.9b) gives us
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where
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So (3.9b) implies (3.17), not (3.9a). Although we can

apply a correction factor to (3.9a) [to obtain (3.17)],

this involves TL, so we might as well use (3.9b) in the

first place.

Using Q 5 u instead of uDL is less expensive compu-

tationally, but also leads to more approximation. Bolton

states ‘‘For most purposes (B38) is probably to be pre-

ferred, since it makes use of u. As a basis for very ac-

curate work, however, (B39) with uDL given by (B24) is

suggested.’’ However, the author prefers using formulas

that use uDL instead of u for the following reasons. First

note that from (B4), (B5), (B7), (B24), and the ideal gas

laws for moist and dry air, uD, and its value at the LCL,

uDL, are related to u by
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Thus, the extra work involved in computing uD or uDL

is relatively minor, and simply replacing uD with u in

the exact Eq. (3.7) introduces error by tacitly setting the

above quantities in square brackets to 1. Since u , uD, the

adjustment to latent heat has to be larger when Q 5 u.

4. Approach for devising new formulas

The approach is to minimize the difference between

the true specific pseudoentropy and the one associated

with a given formula. From (3.6) and (3.9a) this differ-

ence for a saturated parcel is
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for Q 5 uD. [When Q 5 u, the term cpd ln(u/uD) is added

to the right side.] Here, Y(TK, uE) [ rs(TK, uE)/TK. To

compensate for the omission of the cw term in (3.9b), we

seek the optimum L*, defined as the one that minimizes

the maximum error, js
p
* 2 spjmax, in a specified region of

a thermodynamic diagram. At cold temperatures and

hence small mixing ratios, jsp
* 2 spj is small because Y is

small. We need to make this difference small at large rs.

For large mixing ratios, jsp
* 2 spj is small only if
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where L* 5 L at the cold temperature T0. For estimation

of L* 1 K2rs, the quantity,
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[from (3.7)] was evaluated, using results from the nu-

merical integration procedure described below. We may

regard L as the data that L* 1 K2rs should fit at large

mixing ratios, and thus satisfy the approximation in (4.2).

The procedure (Bolton 1980) finds the true EPT of a

parcel as follows. From (3.6), the differential equation

defining a pseudoadiabat is

0 5 d lnu
E

5 d lnu
x

1
c

w

L(T
K

)
x dT

K
, (4.4)

where lnux 5 lnuD 1 x and x [ Lrs/cpdTK. The satura-

tion vapor pressure is computed from (B10), the dew-

point temperature is calculated from the inverse of

(B10), and the temperature at the LCL is given by (B15).

The quantities ux and x along a pseudoadiabat are found

by numerically integrating (4.4) from the LCL where

ux [ u
E
9 , using the (second order) modified Euler

method here and small temperatures steps. To reduce

round-off error slightly, the prognostic variable in (B31)

is changed here to ln(ux/ux0) where ux0 is the value of ux

at p 5 p0. At each step, x is recovered from ux by solving

(B32) via Newton’s method. The pressure at each step

is given by p 5 es(1 1 «L/cpdTKx). The EPT of the

pseudoadiabat is the value of ux obtained by integrating

to a very cold temperature T0 (in K) where the value of

ux no longer changes.

5. Optimization procedure

First, consider formulas with two degrees of free-

dom, L0
* and L1

* (K2 5 0). We seek the values of L0
* and

L1
* that minimize the maximum absolute error jdsjmax

in the region of a thermodynamic diagram defined by
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100 # p # 1050 mb and uw # 328C (uE # 400 K). The

procedure used to find the optimal values of the parameters

L0
* and L1

* in a formula consists of the following steps.

1) Choose the set of grid points {2208, 2188, . . . , 328C} 3

{100, 125, . . . , 1050 mb} in (uw, p) space.

2) From the initial condition TK 5 uw, p 5 p0, integrate

along pseudoadiabats as described in section 3 to

determine the true value of the EPT, uE, that cor-

responds to each WBPT, uw.

3) The integration procedure yields pressure on a

regular grid in (uw, TK) space. Obtain the values of

temperature at the grid points in (uw, p) space by

interpolation.

4) Select initial values for L
0
* and L

1
*.

5) Use the formula to compute the estimated EPT, uE
*,

of a saturated parcel at each point.

6) At each point, calculate the difference duE [ uE
* 2

uE between the EPT computed from the formula

and the true EPT. Save duE(uw, p).

7) Find the maximum absolute difference jduEjmax.

8) If the formula has two degrees of freedom, set up a

mesh system in the 2D (L
0
*, L

1
*) space centered on the

initial value with uniform spacing DL
0
* and DL

1
* di-

rections. Repeat steps 4–7 at each grid point and

contour the jduEjmax field. This is done for (2.7) with

K2 5 0 in Figs. 1 and 2 for a 251 3 251 grid in the

domain defined by L0
* 2 [2.5 3 106, 2.75 3 106] J kg21

and L1
* 2 [0, 2500] J kg21 K21. At this high resolution

it is evident that there is only one minimum in the

domain when either Q 5 uDL (Fig. 1) or Q 5 u (Fig. 2).

9) Record the minimum value and locate the grid point

where it occurs. At this point center a new 251 3 251

grid with the spacing DL0
* and DL1

* reduced by

FIG. 1. Contours of jduEjmax in (L0
*, L1

*) space for Q 5 uDL. The grid spacings are DL0
* 5

103 J kg21 and DL
1
* 5 10 J kg21 K21. The contour levels and the minimum value in the 251 3

251 grid are shown at the top. The letters R, D, and the large O are centered on the points

(L0, L1) 5 (2501 3 103, 2370) used in (2.4), (L0
*, L1

*) 5 (2550.5 3 103, 0) used in (6.2), and

(L0
*, L1

*) 5 (2569 3 103, 900) used in (6.4), respectively (units are SI).
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factors of 30 and 10, respectively, and find the

minimum value and its location in this grid.

10) The optimum values of the parameters have now

been determined. The accuracy E of the formula is

the minimum value of jduEjmax in (L
0
*, L

1
*) space.

The parameters have to be found quite precisely

because the error is sensitive to it [as found also by

Bryan (2008)].

11) Data are also evaluated at points {uw 5 348, 368, 388,

408C} 3 {p 5 100, 125, . . . , 1050 mb} in a grid ex-

tension for plotting in some of the figures. These

data are not used in optimization.

12) Steps 8–10 are similar for a formula with only one

parameter L
0
*, except the search for the minimum is

one dimensional (along the line L1
* 5 0). For the

formula with three parameters, steps 8–10 are per-

formed for different values of the third parameter,

K2, until the minimum in the 3D parameter space is

found.

The method is quite general. It can be easily adapted

to work with values of the physical constants and for-

mulas for saturation vapor pressure and condensation

temperature that differ from those that Bolton used.

6. Optimized formulas

We first consider the class of formulas with L
1
* 5 0.

The optimized version of (B35) is

u
E

5 u exp
Ar

T
L

� �
, A [ L

0
*/c

pd
5 2674.5 K, (6.1)

where the optimum value of A is only slightly different

from Bolton’s value of 2675 K. Using uDL instead of u

provides us with a new more accurate formula:

u
E

5 u
DL

exp
L

0
*r

c
pd

T
L

 !
, (6.2)

FIG. 2. As in Fig. 1, but for Q 5 u. The letters A and the large O locate the points (L
0
*, L

1
*) 5

(2689.7 3 103, 0) used in (6.1) and (L0
*, L1

*) 5 (2711 3 103, 1109) used in (6.3), respectively.
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where L
0
* 5 2.5505 3 106 J kg21 is the optimum value,

which is close to the value 2.555 3 106 J kg21 obtained by

Bryan (2008) despite the different optimization criteria.

Optimizing (2.7) with K2 5 0 and two degrees of

freedom, L0
* and L1

*, results in the new formulas:

u
E

5 u exp
L

0
*� L

1
*(T

L
� C)

c
pd

T
L

r

" #
,

L
0
* 5 2.711 3 106 J kg�1

L
1
* 5 1109 J kg�1 K�1

8<
: (6.3)

and

u
E

5 u
DL

exp
L

0
*� L

1
*(T

L
� C)

c
pd

T
L

r

" #
,

L
0
* 5 2.569 3 106 J kg�1

L
1
* 5 900 J kg�1 K�1

.

(
(6.4)

In addition, a new formula with three degrees of

freedom is found:

u
E

5 u
DL

exp
[L

0
*� L

1
*(T

L
� C) 1 K

2
r]r

c
pd

T
L

( )
, (6.5)

where L
0
* 5 2.56313 3 106 J kg21, L

1
* 5 1754 J kg21 K21,

and K2 5 1.137 3 106 J kg21.

7. Accuracy of the formulas

The previous and new formulas are ranked in terms of

the accuracy E in Table 1 and their maximum errors as

functions of uw are shown in Figs. 3–5. The accuracies of

the formulas in the region 100 # p # 1050 mb and uw #

328C are determined first of all by the number of degrees

of freedom and then, with one exception, by the choice

for Q as anticipated in section 3. The Rossby equation

(2.4), which has no degrees of freedom, shows the

maximum error (up to 5 K in the above region) that

TABLE 1. The formulas for uE and their errors. Here E is the maximum error in uE for saturated parcels in the region of a thermodynamic

diagram defined by 2208C # uw # 328C and 100 mb # p # 1050 mb. The formulas are listed in order of increasing accuracy. The numbers

in parentheses in the fourth column are the maximum errors for uw # 408C.

Formula Equation Values of constants E (K)

Degrees of

freedom

(2.4)
u

E
5 u

DL
exp

L
0
� L

1
(T

L
� C)

cpdTL

r

" #
L0 5 2.501 3 106 J kg21,

L1 5 2370 J kg21 K21
5.0 (11.1) 0

(Br13) uE 5 uDH
�kdr/« exp

L
0
*r

cpdT

 !
L

0
* 5 2.555 3 106 J kg21 0.57 (0.73) 1

(6.1) uE 5 u exp
L

0
*r

cpdTL

 !
L

0
* 5 2.6897 3 106 J kg21 0.49 (1.32) 1

(6.2)
uE 5 uDL exp

L
0
*r

cpdTL

 !
L

0
* 5 2.5505 3 106 J kg21 0.38 (0.84) 1

(6.3)
uE 5 u exp

L0
*� L1

*(TL� C)

cpdTL

r

" #
L

0
* 5 2.711 3 106 J kg21,

L1
* 5 1109 J kg21 K21

0.18 (1.66) 2

(6.4)
uE 5 uDL exp

L0
*� L1

*(TL� C)

c
pd

T
L

r

" #
L0

* 5 2.569 3 106 J kg21,

L
1
* 5 900 J kg21 K21

0.11 (1.28) 2

(B38)**
u

E
5 u exp

L*r

cpdTL

(1 1 k
2
r)

" #
L0

* 5 2.6975 3 106 J kg21,

L1
* 5 2554.5 J kg21 K21,

k2 5 0.810

0.085 (0.94) 2

(B39)
u

E
5 u

DL
exp

L*r

cpdTL

(1 1 k
2
r)

" #
L0

* 5 2.5643 3 106 J kg21,

L1
* 5 1790 J kg21 K21,

k2 5 0.448

0.036 (0.104) 3

(6.5)
uE 5 uDL exp

(L* 1 K
2
r)r

cpdTL

" #
L0

* 5 2.56313 3 106 J kg21,

L1
* 5 1754 J kg21 K21,

K2 5 1.137 3 106 J kg21

0.015 (0.095) 3

** (B38) has only two degrees of freedom because L* 5 1.0784L.
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arises from neglecting the cw term and utilizing the

actual latent heat. The Rossby formula has a maximum

error with respect to pressure (with uw held fixed) that

varies almost exponentially with uw (Fig. 3).

Of the formulas with a constant adjusted latent heat

(one degree of freedom), (6.2) has the least maximum

error, 0.38 K (Fig. 3) because it uses uDL. The modified

Betts–Dugan equation (6.1), which contains u, is accu-

rate to 0.49 K. Even though it has the same form as (6.2)

for a saturated parcel, Bryan’s formula (Br13) with a

maximum error of 0.57 K is slightly less accurate than

(6.1). This is probably due to it being optimized by

minimizing the mean square error (instead of the max-

imum error) for a limited number of cases.

Because it uses u, (6.3) with a maximum error of

0.18 K is the least accurate of the formulas with two

degrees of freedom (Fig. 4). Even though it also uses u

and (6.4) uses uDL, (B38) is slightly the more accurate

with a maximum error of 0.09 K compared to 0.11 K.

The better accuracy of (B38) is probably because of its

use of k2 [see (2.1)] as the second adjustable parameter

and because of the fixed parameter L1
* being determined

by L* } L instead of being set to zero.

In the category with three degrees of freedom, (6.5) is

accurate to 0.15 K and (B39) to 0.035 K (Fig. 5). How-

ever, (B39) is more accurate for uw , 248C so there is

little to choose between the two formulas. Surprisingly,

(B38) is used most frequently (Emanuel 1994; Bryan

2008) even though it is less accurate than (B39).

The maximum errors are not restrained by optimiza-

tion beyond uw 5 328C and grow rapidly (Figs. 3–5). For

uw # 408C, the widely used Eq. (B38) has a maximum

error of 0.94 K (Table 1). In contrast, (6.5) and (B39)

contain the error to 0.1 K (Fig. 5).

The quantity L defined by (4.3) is the ‘‘adjusted latent

heat according to the data.’’ Figure 6 is a scattergram of

FIG. 3. Maximum absolute error juE
* 2 uEj as a function of uw for

the Rossby formula, (Ro) or (2.4), which has no degrees of free-

dom, and for the Eqs. (6.1), (6.2), and (Br13) that have one degree

of freedom. The ordinate scale is logarithmic.

FIG. 4. As in Fig. 3, but for (B38), (6.3), and (6.4), which have two

degrees of freedom.

FIG. 5. As in Fig. 3, but for (6.5) and (B39), which have three

degrees of freedom, and the ordinate scale is now linear.
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L versus T for all the points in the grid for which rs $

0.002. Lower values of rs were excluded because L /
0/0 as rs / 0. The data do not lie precisely on a straight

line, indicating that, although L is mainly a linear func-

tion of TK, it is slightly dependent on r. The straight lines

are the actual latent heat, L 5 L0 2 L1T used in (2.4),

the constant latent heat, L* 5 L
0
*, used in (6.2), and the

adjusted latent heats, L* 5 L
0
* 2 L

1
*T, used in (6.4),

(6.5), and (B39). The constant latent heat used in (6.2) is

equal to the computed adjusted latent heats within a few

degrees of 208C. The line for (6.4) fits the data well. The

(6.5) and (B39) lines are not a good fit at cold temper-

atures (and small mixing ratios), but this is not crucial

because L* is multiplied by r in the formulas. These lines

underestimate the observed adjusted latent heats at warm

temperatures to make room for functions of r, which

are not represented in Fig. 6. Figure 7 is a scattergram for

L/L*(B39) versus rs to isolate the (1 1 k2r) factor in (B39)

according to the data. The points spread out at small

mixing ratio as the numerator and denominator both tend

to zero. Bolton’s line 1 1 0.448rs fits the data nicely, thus

verifying (B39). Similarly a scattergram for L 2 L*(6.5)

versus rs (Fig. 8) isolates the K2r term in (6.5) according

to the data. The line K2rs, K2 5 1.137 3 106 J kg21, ob-

tained by optimization, is also a good fit to the data.

For formulas with L
1
* 5 k2 5 K2 5 0, it is apparent

from (2.7) that the adjusted latent heat for a formula that

uses u must be larger than the corresponding formula

that uses uDL by an amount that is approximately equal

to (cpdTL/r) ln(uDL/u). Over the grid this quantity ranges

from 1.2 3 105 to 1.6 3 105 J kg21 with a mean around

FIG. 6. Scatter diagram for L [ cpd ln(uE/uD)/Y vs temperature

T (8C) for data at all the points in the grid for which rs $ 0.002

(small dots) and at the points in the grid extension (circled dots).

The lines identified by L, (6.2), (6.4), and (6.5) and the dashed line

[near the (6.5) line] are the actual latent heat of vaporization ac-

cording to (B2), the constant adjusted latent heat used in (6.2), and

the adjusted latent heats used in (6.4), (6.5), and (B39), respec-

tively. The data for uw . 328C is not used in the determination of

the adjusted latent heats (and K2).

FIG. 7. Scatter diagram for L/L*(B39) vs rs for the same data

points as in Fig. 6, where L*(B39) is the adjusted latent heat in

(B39). Also shown is the line L/L*(B39) 5 1 1 k2rs, k2 5 0.448,

which is Bolton’s fit to the data.

FIG. 8. Scatter diagram for L 2 L*(6.5) vs rs for the same data

points as in Fig. 6, where L*(6.5) is the adjusted latent heat in (6.5).

Also shown is the line [L 2 L*(6.5)] 5 K2rs, K2 5 1.137 3 106

J kg21, used in (6.5).
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1.4 3 105 J kg21. From Table 1 we see that this agrees

with the difference (1.39 3 105 J kg21) between L
0
* for

(6.1) and (6.2).

Finally, we stress that all the accuracies given above

are relative to the results from numerical integration of

(B25). Owing to cpd not being strictly constant, there is

an uncertainty of up to 0.2 K, which has not been taken

into account (Bolton 1980).

8. Summary

The accuracies of several formulas for equivalent po-

tential temperature have been assessed by computing

their maximum error throughout the region of a thermo-

dynamic diagram defined by 100 # p # 1050 mb and uw #

328C (uE # 400 K). The more accurate formulas contain

uDL rather than u, and TL, not H. Some new formulas

have been devised. These have two or three degrees of

freedom and minimize the above maximum error. With

one degree of freedom, a constant latent heat, it is possible

to fit the data to 0.4 K. This error is reduced to 0.1 K [in

(6.4)] by utilizing an adjusted latent heat that depends

linearly with temperature. The residual error is not a

function of temperature. It must therefore be a function of

r since TL and r alone (or TK and rs if the parcel is satu-

rated) determine uE. To achieve greater accuracy than 0.1

K, a formula must contain this extra dependence on r.

Bolton’s (B38) and (B39) do so by containing an r2 term.

Equation (B39) is the more accurate because it uses uDL

and has an extra degree of freedom.

Finding the imitation first law of thermodynamics that

the formulas satisfy approximately reveals how the

formulas work. Adjusting the adjusted specific heat of

water to zero to eliminate the integral term in the en-

tropy formulation and Kirchoff’s equation makes the

specific heat of water vapor negative (or zero if the

formula uses a constant latent heat). Thus, the specific

heat of moist air is reduced artificially. An artificial in-

crease in latent heat, (L* 2 L) dr, is required to com-

pensate for the decrease in specific heat.

The highly accurate Eqs. (B38) and (B39) are not

easily reconciled with an imitation first law. Therefore, a

formula, (6.5), is devised herein that has a slightly sim-

pler formula than (B39), has comparable accuracy, and

can be related to an imitation first law if a small r2 term is

added to the imitation enthalpy. This small boost in

enthalpy is additional compensation that is needed at

high mixing ratios.

Acknowledgments. This work was supported in part

by NSF Grant ATM-0733539. I thank Dr. George

Bryan and two anonymous reviewers for their thought-

provoking comments.

APPENDIX

List of Symbols

A 5 2675 K, the constant in (B35).

C 5 273.15 K (absolute zero 5 0 K 5 2273.158C).

E: Maximum absolute error in uE for uw # 328C, 100 #

p # 1050 mb.

H: Relative humidity [ e/es.

K2: A constant in (2.7) and (6.5) 5 1.137 3 106 J kg21 in (6.5).

L(TK): Latent heat of vaporization, 5L0 2 L1(TK 2 C).

L0 5 2.501 3 106 J kg21.

L1 5 2370 J kg21 K21 (’cw 2 cpy, Kirchoff’s equation).

L* Adjusted latent heat, 5L0
* 2 L1

*(TK 2 C).

Q: Total water mixing ratio (g g21).

Rd: Gas constant for dry air 5 287.04 J kg21 K21.

Rm: Gas constant for moist air 5 Rd(1 1 r/«)/(1 1 r) ’

Rd(1 1 0.608r).

Ry: Gas constant for water vapor 5 461.50 J kg21 K21

(5Rd/«).

T, TK: Temperature (8C and K, respectively).

TL: Temperature at the LCL (K).

T0: A very cold temperature (K).

Y [ r/TK (K21).

cpd: Specific heat at constant pressure of dry air 5

1005.7 J kg21 K21 (53.504 Rd).

cpm: Specific heat at constant pressure of moist air 5

(cpd 1 rcpy)/(1 1 r) 5 cpd(1 1 0.887r).

cpy: Specific heat at constant pressure of water vapor 5

1875 J kg21 K21 (’4Ry).

cpy
* : Adjusted value of cpy 5 2L1

*.

cw, cw
*: Specific heat of water, 54190 J kg21 K21 and

adjusted value (50).

e: Vapor pressure (mb), e 5 es(TD), TD 5 dewpoint

temperature (K).

es(TK): Saturation vapor pressure (mb) 5 6.112 3

exp[17.67(TK 2 C)/(TK 2 C 1 243.5)].

des/dTK 5 Les/RyTK
2 (Clausius–Clapeyron equation).

h, h*: Specific enthalpy, adjusted specific enthalpy (J kg21).

k2: A nondimensional constant equal to 0.81 in (B38)

and 0.448 in (B39).

p: Pressure (mb).

p0: 51000 mb.

r: Mixing ratio (g g21), 5«e/(p 2 e).

rs: Saturation mixing ratio (g g21) 5 «es/(p 2 es).

rw: Liquid water mixing ratio (g g21).

sp, sp
*: Actual and adjusted specific pseudoadiabatic en-

tropy.

sr: Total (reversible) specific entropy of moist air [ sd 1

rsy 1 rwsw.

DL
0
*, DL

1
*: Grid spacings in (L

0
*, L

1
*) space.

L: Defined in (4.3).

Q: Either u or uDL.
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ad: Specific volume of dry air (m3).

x [ Lrs /cpdTK.

« 5 Rd /Ry 5 0.6220.

kd 5 Rd /cpd 5 0.2854 (’2/7).

km 5 Rm /cpm 5 kd(1 2 0.28r).

u: Potential temperature of moist air (K) 5 TK(p0/p)km .

uD: Potential temperature of dry air (K) 5 TK[p0/

(p� e)]k
d .

uDL: Value of uD at the LCL (K).

uE, uE9 : EPT and Rossby EPT (K).

u
E
*: Estimate of uE by a formula.

uw: Wet-bulb potential temperature (WBPT) (8C).

ux [ uD exp(x).

jduEjmax: Maximum error in uE as a function of L0
* and L1

*.
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