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ABSTRACT

Previous studies have shown liquid water potential temperature to be an inappropriate choice for a
thermodynamic variable in a deep cumulus convection model. In this study, an alternate form of this
variable called ice-liquid water potential temperature (8,) is derived. Errors resulting from approximations
made are discussed, and an empirical form of the 6; equation is introduced which eliminates much of
this error. Potential temperature lapse rates determined in saturated updrafts and unsaturated down-
drafts by various 8, approximations, an equivalent potential temperature approximation and a conventional
irreversible moist thermodynamic approximation are then compared to the potential temperature lapse
rate determined from a rigorously derived reversible thermodynamic energy equation. These approxi-
mations are then extended to a precipitating system where comparisons are again made. It is found that
the errors using the empirical form of the 6, equation are comparable to those made using conventional
irreversible moist thermodynamic approximations. The advantages of using 8, as an alternative to 8
in deep convection and second-order closure models also are discussed.

1. Introduction

Liquid water potential temperature (6,) was first
introduced by Betts (1973) as a conservative thermo-
dynamic variable for non-precipitating convection.
Later, Deardorff (1976), and Sommeria and Dear-
dorff (1977) successfully incorporated it into a three-
dimensional shallow convection model using sub-
grid-scale turbulence closure. The variable 8, is
found particularly useful for turbulent closure
models because it is conserved for liquid to vapor
phase changes, while it becomes synonymous with
potential temperature & when no liquid water is
present. Its use was extended to a set of precipi-
tating, deep convection equations using second-
order turbulence closure by Manton and Cotton.!
Wilhelmson (1977), however, demonstrated that ap-
plication of 4, to deep convection produced very
large positive temperature errors when compared
to reversible moist ascent over the depth of the
troposphere.

In this work, the derivation of 0, is reexamined
in order to gain insight into which approximations
lead to the errors in 6, that Wilhelmson (1977)
pointed out. Also, the ice phase is added and new
approximate formulas are derived defining ice-liquid
water potential temperature (6;). The variable 6,

! Manton, M. J., and W. R. Cotton, 1977: Formulation of ap-
proximate equations for modeling moist deep convection on the
mesoscale. Atmos. Sci. Pap. No. 266, Colorado State University,
NSF Grant DES 7513310, 62 pp.
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is conservative under vapor to liquid, vapor to ice
and liquid to ice phase changes. These formulations
are then empirically modified to closely fit tempera-
ture variations given by a more rigorous form of the
first law. A description of the performance of 6,
compared to some other thermodynamic approxima-
tions for moist ascent and subsaturated evaporative
descent is given.

2. A rigorous form of the thermodynamic energy
equation

In a study of this type, a rigorously derived form
of the thermodynamic energy equation must be se-
lected as a norm or standard for which all more ap-
proximate forms of the thermodynamic energy equa-
tion can be compared. We begin with the first law
of thermodynamics for open systems as developed
by Dutton (1976) in the form (see Appendix for list
of symbols)

d(C, InT) — d(R lnp,) + d(r., I‘T’) - d((ri %)

A, A,
+ r,,d(T') - rid(?’) +rCdInT = 0. (1)

Eq. (1) and subsequent equations in this paper
will use a derivative notation presented by Dutton
(1976). The subscript i following a derivative op-
erator refers to changes in a quantity occurring in-
ternally within the parcel. The subscript ¢ (for ex-
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ternal) following the derivative operator refers to
changes in a quantity due to a net flux of that quantity
into or out of the parcel. No subscript following
the derivative operator refers to the total change
which is the sum of the external and internal
changes. Extensive variables can have external and
internal derivatives if a flux of that quantity relative
to the air parcel occurs. Intensive variables such as
temperature, however, have external derivatives
identically zero. As with Dutton (1976), we require
vapor to move with the air parcel, i.e., d.r, = 0.
In the case of (1), we therefore can see on inspection
that the external variation in r; will not influence
the temperature change. On the other hand, the in-
ternal change of r; must be due to a phase change
and therefore will influence temperature. In the case
of (1), sensible heat transport by precipitation into
the parcel is neglected.

Eq. (1) is the same as the norm used in the study
by Wilhelmson (1977) if (i) the ice phase is neglected,
(ii) thermodynamic equilibrium over a plane surface
of water is assumed (this implies r, must vary as r,;)
and (iii) variations of R and C,, are neglected. In this
study, we also will make assumption (iii), however,
we will consider the ice phase and equilibrium will
not be assumed. Instead, the affinity terms may be
expressed as
2

Ay =y — My, (3)
where Hhos My and u; are the chemical potential of
vapor, ice and liquid water. Following Fletcher
(1962), the chemical potential of vapor may be de-
fined as

C))

where u, is a base state chemical potential. The
chemical potentials at the surface of the water drop-
let and ice particle are expressed by the equilibrium
values of the vapor chemical potential at those sur-
faces. These chemical potentials may be expressed

as
®)
6

Strictly speaking, e, and e represent the saturated
vapor pressures with respect to liquid and ice at the
surface of individual drops and ice particles having
surface temperatures differing from the ambient
temperature 7. We will ignore surface curvature and
solution effects, however, and evaluate e,, and e
with respect to plane, pure water or ice surfaces at
the ambient temperature 7. From the equation of
state, the identity

roR,d Ine, = (R + r,R,)d Inp — Rd Inp; (7)

may be derived. Combining (1)-(7) and using the
relationships

Ay = My — Mo
and

Mo = Mo + RvT lne,,,

My = Mo t+ R, T Ine,,
and
M = po + R, T Ineg;.
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d
‘_le = Cvp - Cl’ (8)
dt
d
—Ly=C -0, 9
dt ) )
Ly =Ly — Ly, 10
the first law may be rewritten as
L,, "Ly

Cpmd InT — Rdlnp+——d ——]:‘d’z

+ (r, + ri)[L,l,d(%) + R,d lnesv]

- ri[L,-vd(%) +R,d lnesi] =0, A1)

where C,, =C, + r,C,, + r,C; + r,C; and R,
= R + r,R,.

Defining the variation in saturation vapor pres-
sures from the Clausius-Clapeyron relation yields
the value of zero for both bracketed terms. The
final rigorous form of the first law is then

Lil

Ly,
CymdInT — R, dInp + T’ dr, — = dir; = 0. (12)

This equation is similar to that used by Betts (1973)
except that an ice term is included and equilibrium
is not assumed. Since we have not assumed equilib-
rium, changes in r, may or may -not be the same
as changes in saturation vapor pressure. As a result,
this formulation should be more valid for sub-
saturated evaporation of liquid or ice water, super-
saturated growth of ice, and other phase changes
which may or may not be equilibrium processes.
Because of this, (12) may not be reversible. For
example, condensation during saturated ascent fol-
lowed by evaporation in a subsaturated downdraft
would not be a reversible process.

From Poisson’s equation, potential temperature
may be defined as

R
dind =dInT — —d Inp. 13)
o
Combining (13) with (12), we can write
d nf = (R'" - —R—)d Inp
Cpm CI‘
v Li
L dry + —2_dir;.  (14)
Con T ConT

In this study, we will use (14) as a norm for assessing
the magnitude of errors associated with more ap-
proximate forms of the thermodynamic energy equa-
tion when it is applied to deep, moist convection.
An assumption used to simplify (14) is to neglect
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the heat storage by water. As a result, (14) may
be approximated by
Ly, L;
©dr, + —— dir..
» »T
If equilibrium is assumed, then dr,, = dr,, and (15)
becomes the classical moist pseudoadiabatic rela-
tionship, except for the additional ice term. This
form is common to most deep atmospheric models.
Assuming conservation of total water given by

dIng = —

(15)

. dry + dir + diry = 0, (16)
and applying (10), we may rewrite (15) as
L v Liv
d ln0 = ! dirl + d,-ri. (17)
C,T C,T

Variations in 0 given by (14), (15) and (17) occur
only due to internal changes of r; or r,. Therefore,
it is evident that changes in r; and r; due to precipi-
tation will not affect 6. This, however, is not to
say that (14), (15) or (17) are invalid for a precipi-

tating system.

" Because it is often desirable to obtain a thermo-
dynamic variable which is conservative under adia-
batic liquid and ice transformations, the ice-liquid
water potential temperature is defined from (17) by
di ln0,~l =dIng — le dirl - Lw diri = 0.
c,T Cc,T

p p

(18)

This definition is similar to that first proposed by
Betts (1973) except for the ice phase term and lack
of an equilibrium assumption. It should be noted that
because 6 is defined both by @ which is an intensive
property and r, and r; which are extensive properties,
8, too is extensive. Therefore, external fluxes of 6;
may occur into and out of the parcel due to relative
precipitation movement. From (18), we know 4, will
be conserved provided all condensate remains
within the original parcel. In the case that precipita-
tion does occur, external fluxes of r, and r; and there-
fore 8, must be taken into account when calculating
the total change in 6;. We will consider these
changes more conveniently later in this section.
Similarly, an equivalent ice-vapor water potential
temperature can be defined from (15) by

Ly,
! dr, —
C,T C, T

where 6,,, is similar to the equivalent potential tem-
perature except again for the ice phase term and the
lack of an equilibrium requirement. As with the defi-
nition of 6;, (19) refers only to internal changes in

0..». This means 6., is conservative over phase
changes but not over precipitation fluxes into and
out of the parcel. Hence (18) and (19) define two
variables, both of which are conserved over water

d; In6,;, = d Ind + dir; =0, (19)
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phase changes. The variable 9;; is especially useful
as a model variable because it is identical to 6 when
no condensate is present, and does not vary as con-
densate forms (so long as the condensate is carried .
along with the parcel). The variable 6.;, is useful in
diagnostic studies as a tracer because it varies much
the same as the moist static energy (e.g., see Betts
and Silva Dias, 1979; Grandia and Marwitz, 1975;
Zipser, 1969).

In order to make (18)—-(19) more integrable, L.,
L;, Ly, C, and T are brought into the differential.
Eqgs. (18) and (19) then become

L v Liv i
di ln(0,l/0) = _dl[_ﬂ + d ] + € + €9, (20)
c,T C,T
| L v p ilhi )
d, 10(B,0,/6) = +di[ wle _ L—l’] featea @D
c,T C,T
respectively, where '
22
< dF) @
_ ’l (L) 23)
C, T
Lo e
€ = 2 d(fi) . 25)
C, T

1t is evident that d(L,./T), d(L;,/T) and d(L;/T)
are all proportional to —d7/T? which grows non-
linearly as temperature becomes small. From (8)
we know L,, increases with decreasing temperature.
Therefore, €, will increase nonlinearly with decreas-
ing temperature in the presence of liquid water. The
€; error, however, is weighted by vapor rather than
liquid water. This leads to a diminished importance
of €; as the temperature falls, and the saturation
mixing ratio becomes small exponentially. Hence ¢,
will become increasingly large at small 7, while €;
will first increase and then decrease-back toward 0
as r, goes to zero. Also it can be noted, the ¢; error
is of opposite sign to ¢,. This will lead to opposite
signs in the error given by (20) to that of (21) in the
presence of liquid water only. Because L, varies
very little with T, €; is dominated by the inverse
temperature error which increases with decreasing

" temperature in the presence of r;. From (9) we know

L;; decreases with decreasing temperature linearly.
This will tend to cancel the inverse temperature error
at higher temperatures, but the effects of inverse
temperature must dominate as the temperature be-
comes low enough. Therefore, as e; diminishes at
low temperatures, the sign of the total error for (21)
may reverse when ice is present and vapor is very
small.
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If we neglect €,, ¢, €5 and €4, as is customary,
we obtain the approximations

0, =0 exp[_[sz(To)rz + Li(To)r; H , 26)
C.T C.T
Li(Ty)r,  Ly(Ty)r; ]}
oeil’ =4 N + s 2
P { [ C,T C,T @7

where we have taken L;;, L,, and L;, to be constant
and evaluated at T, = 273.16 K. From (18) and (19)
we know 6, and 6., are conservative (aside from
the €, €, €; and €, errors mentioned above) for
phase changes of water, but they become noncon-
servative in the presence of precipitation fluxes. The
diagnosis of # from the 6, equivalent of (26) in a
nonprecipitating system was shown by Wilhelmson
(1977) to have a large positive bias at low tempera-
tures which is attributable directly to the ¢, error
of inverse temperature.

In this study, we are concerned with finding a
suitable alternative to the approximation in (26).
Similar to Betts (1973), we employ a Taylor’s series
approximation to (26) given by

_ L(To)ry Liv(To)ri:I
c,T c,T |

Wilhelmson (1977) also showed that the 8, equiva-
lent to (28) resulted in similar errors to the 6, equiva-
lent of (26) when compared against a reversibie,
moist adiabat in a nonprecipitating system. This
form also is identical to Deardorff’s (1976) defini-
tion of 6;. Eq. (26) also can be expanded in the
inverse fashion giving

L, (Ty)r, + Liv(TO)ri}
C,T c,T |

Betts (personal communication) pointed out such a
relationship will lead to slightly better evaluation of
6 at midlevels, but must also lead to increasing error
at low temperatures.

To compensate for these errors, we have intro-
duced an empirical approximation to (29) which im-
proves the accuracy in diagnosing 6. Because ¢,
grows very large at low temperatures, the accuracy
in diagnosing # can be improved by holding the
temperature constant when it falls below 253 K.
Thus the following empirical form of (29) is pro-
posed:

Oy = 0[1 (28)

0= 0,-,,:1 + 29

0 = 01’1[1 + Ly (To)r,
C, max(T, 253)
Ly (Ty)r; ] . (30)
C, max(T, 253)

Because 6, and 8,;, are conservative only in non-
precipitating systems, changes of these quantities
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due to precipitation fallout must be considered in
their practical application. This may be done in two
ways. The first way is to consider that the total
change in 6, is given by

d0i, = diOil + deG,-,. (31)
Applying (18), Eq. (31) becomes
dgil = de0,-,. (32)

For the case of (30), we can differentiate and obtain

_ 0;(2 lederl + Livderi , (33)
8 C, max(T, 253)

where 8, L, L;,, C, and T are intensive properties
and therefore yield no external derivative. The ex-
ternal derivatives of r, and r; are the changes in those
quantities due to precipitation. Similar expressions
can be obtained also for (26)-(29).

Variations in 8;; and 6,;, due to precipitation also
‘are handled conveniently as an adjustment process.
In the case of (30), we first compute all internal
changes in r; and r, due to phase changes and diag-
nose the resulting 6, holding 6;; constant. Then, some
fraction of r; and r; are removed to account for pre-
cipitation. Holding 6 constant, (30) is then used to
calculate a new 6;. As a result, §; is conserved
only as long as precipitation flux is not considered.
From (1), we know external changes of r;, and r;
do not affect 6, and hence the isothermal adjustment
to 6; must also be valid. This adjustment method
was applied to (26)-(30) and used in this study.

_ It will be shown experimentally in the next section
that diagnosis of 6 using (30) is very close to values
diagnosed with (14) for both nonprecipitating sys-
tems and systems where precipitation is treated as
an adjustment process. In a sense, it can be said that
the maximum function introduces an error which
corrects for the neglect of ¢; and ¢, in (20).

do, =d.0,; =

3. Tests of 0, approximation in a simple one-
dimensional Lagrangian model

In order to test the abovementioned forms of the
first law of thermodynamics, a simple Lagrangian
parcel model was constructed. The diagnosis of
by (15) and (26)-(30) are compared to that made by
(14) over two test situations. In the first test, a non-
precipitating or closed system was considered for
which 6; and 6, are conserved. In that test, al-
though precipitation was allowed to form, its ter-
minal velocity was set to be zero forcing it to move
with the air parcel.

The resuits obtained from test 1 will tend to over-
estimate errors which should be expected when ap-
plying these approximations to precipitating sys-
tems, due to the high liquid water contents carried
aloft. Therefore a second test was performed which



1098

allowed precipitation to settle in a physically realis-
tic manner. This test demonstrates the extent to
which the loss of condensate improves the diagnosis
of 6 using the 6, approximations in upper levels.

A third test also was performed which required
all condensate to precipitate out as it was formed.
This is equivalent to a pseudoadiabatic process. Be-
cause the €; and ¢, errors vanish as r;, and r; go to
zero, the 4 variations diagnosed by (26) and (28)-(30)
should be nearly indistinguishable from those ob-
tained by (15) for the pseudoadiabatic process.

The model was run for both saturated ascent of a
parcel containing liquid and ice water and un-
saturated descent of an air parcel containing liquid
water. For saturated ascent, an initially water-
saturated parcel was assumed to have zero liquid
and ice water contents. An initial potential tem-
perature of 300 K was taken while the initial pres-
sure was varied from one experiment to the next.
The model was assigned an updraft velocity profile
given by

w(p — 100 kPa)J] G
100 kPa

where wp., = 10 m s™'. This w profile is used
strictly ds a means to estimate a time scale associated
with a given pressure change for use in the cloud
microphysical calculations. Assuming the above ini-
tial conditions, pressure was lowered by 1 kPa incre-
ments leading to a temperature decrease within the
parcel. From the hypsometric equation, the height
scale associated with this pressure drop is given by

AZ = —Eln(—————p lkpa) :

g p

where AZ is the height change, g is the acceleration
of gravity and p is the pressure. Given the vertical
updraft velocity w, the time taken for this ascent is

w = wmaxlsin[ -

(35)

AZ
At = — . (36)
w
Cloud water was diagnosed from the relation
Fe = (r - Voo — 1y — ri)H(r Vs —Fy — ri), (37)

where H is the heaviside stepfunction given by

0, x=<90

H(x) = 38
) {1, x> 0. ©8)
The total liquid water is thus

rp=re + 1. 39

The growth of rainwater mixing ratio by the pro-
cesses of autoconversion and accretion of cloudwater
was parameterized using the scheme described by
Tripoli and Cotton (1980). The parameterization
used to describe the rate of production of total ice
water (r;) at temperatures warmer than 233 K is de-
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scribed by Stephens.? Cloud water colder than 233 K
is set to zero and ice is assumed to grow by the
ice adiabatic rate given by

diri)
dt moist

e )R
RT M\cC,T RC,T?

where € = 0.611. The ice and liquid water saturation
mixing ratios (rg; and r,,) were determined from the
linearized form of the Goff Gratch equation de-
scribed by Derickson and Cotton.? Mean terminal
velocities of the assumed », and r; distributions were
determined by the rain and ice parameterizations.
The greater time of residence experienced by rain
and ice at the various pressure levels was accounted
for by assuming rain and ice time scales given by

+ 1)] . (40)

w

At, = At —2% | (41)
' w+V,
At = A —2—— | (42)
w + Vi )

where V, is the mean terminal velocity of rainwater
and V, is the mean terminal velocity of ice. These
time scales were then used in conjunction with the
growth rates of rain and ice in the test 2 case. In
the closed system integrations (test 1), terminal ve-
locities were set to zero; hence At, = At; = At.

Because growth rates and saturation mixing ratios
are dependent upon temperature, an iteration was
performed among the given form of the first law,
the microphysical parameterizations, and (37)-(39)
in order to evaluate a unique 6, T, r., r,. and r; set.
The iteration procedure is initiated with a first guess
on  and T assuming r. is zero and r, and r; are
specified from the parameterizations. Then r, is cal-
culated leading to a possible new value for r.. Next
0 is reevaluated and 30% of the difference between
the previous 0 and the new evaluation is added to
the previous @ for the next guess. This provides
the next guess on T, r, and r.. The iteration is com-
plete when the reevaluated 0 has converged to within
0.001 K of the previous 6 estimate.

Integrated forms given by

R, R P,
6, = 6, exp[( ~ - ——) ln(—)
Cpm Cp Pl
Ly (T) Li(T) ]
+ — — V2 — ¥y + — — (Fi2 — TF; 43
Cme( 2 N C,,,,,T( 2 0| 43

? Stephens, M. A., 1979: A simple ice phase parameterization.
Atmos. Sci. Pap. No. 319, Colorado State University, NSF Grant
ATM?77-09770, 122 pp. :

3 Derickson, R. G., and W. R. Cotton, 1977: On the use of
finite Taylor series approximations to certain exponential and
power functions employed in cloud models. Atmos. Sci. Pap.
No. 268, Colorado State University, NSF Grant DES 7513310,

19 pp.
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for (14) and

Li(T)
6. =0 exp[~ -
' c,T

(rt’2 - rrl)

+ C‘(T) (riz—rn)] (44)

»

for (15) were used to determine the new 6. The sub-
scripts 1 and 2 refer to the previous and predicted
values respectively, while the overbars represent the
average of the position 1 and position 2 values. It
should be noted that these predictions do not include
external changes in r; due to precipitation fallout.
These changes are made (for the test 2 and test
3 calculations) as an isothermal and isobaric adjust-
ment process which is described below. In the cases
of (26)-(30), no finite differencing is necessary to
determine 6.

In the open system (tests 2 and 3) calculations,
precipitation adjustments to rain and ice were made
isothermally and isobarically after the closed system
calculations described above were complete. In the
test 2 case, assuming the vertical variations in rain-
water and ice water are such that their mixing ratios
decrease to zero 10 pressure increments above the
parcel pressure level, a forward-upstream time and
space operator was employed to determine the
losses to rain and ice. This operator is given by

Ar, = YrIr AL (45)
10 AZ
for rain, and
V.r, At
Arp = =t =2 (46)
10 AZ

for ice losses. For test 3, in which all condensate
was removed, changes in rain, cloud water and ice
were given simply by

Ar, = —r,, 47
Arg = —r, (48)
Ar; = —r,. (49)

The values of 6; or 6,;, were then recalculated hold-
ing p and 6 constant.

Calculations were also performed for both test 1
and test 2 for the case of unsaturated descent of an
initially water-saturated air parcel containing 6.0 g
kg™ rainwater and 0.0 g kg™! cloudwater at a given
pressure value. In this case, the evaporation of rain
was the only physical process considered. The
parameterization of rain evaporation is described
by Tripoli and Cotton (1980).

These simple model calculations led to a change
in 6 with decreasing pressure characteristic of each
form of the first law tested. The computed character-
istic potential temperature lapse rates were then
compared to that given by (14) in order to evaluate
the relative accuracy of the approximation.
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FiG. 1. Test 1 (zero precipitation fall velocity) differences be-
tween 6 diagnosed by (14) and the equations labeled as a func-
tion of pressure for a rising parcel. Calculations are performed
for a parcel initially liquid water saturated at (a) 90 kPa, (b) 70
kPa and (c) 50 kPa pressure rising to 11 kPa. Initial potential
temperature was 300 K in each case.

4. Results

For tests 1, 2 and 3, vertical variations of potential
temperature were computed using (15) and (26)-
(30), and then compared to the results using (14).

Fig. 1 shows the calculated differences between the

various schemes starting from different base pres-
sures for moist ascent for test 1. Variations similar
to those shown by Wilhelmson (1977) are noted for
#,; using the expressions similar to those he tested,
although superior performance has been obtained at
higher temperatures perhaps from the iterative treat-
ment on @ based on more exact formulations of
saturation over water and ice. The differences ob-
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TABLE 1. Root-mean-square error (K) accumulated by each diagnostic technique in evaluating @ starting from initial pressure value
and ending at final pressure value. Tests 1 and 2 refer to tests with non-precipitating and precipitating systems.

Initial pressure—
final pressure

Eq. (15) Eq. (26)

Eq. (27)

Eq. (28) Eq. (29) Eq. (30)

(kPa) Test1 Test2 Testl Test2 Testl Test2 Testl Test2 Testl Test2 Testl Test2
90-11 0.40 0.31 4.66 3.32 6.23 5.16 5.99 4.19 3.55 2.56 0.19 0.13
70-11 0.29 0.20 3.10 2.80 4.19 4.09 3.67 3.30 2.58 2.34 0.31 0.23
50-11 0.41 0.17 2.37 2.41 3.94 4.13 2.87 2.87 1.92 1.97 0.63 0.41
50-94 0.13 0.07 0.46 0.36 1.90 0.74 0.79 0.64 0.15 0.10 0.15 0.10
70-94 0.05 0.31 0.21 0.62 0.27 0.45 0.33 0.18 0.09 0.18 0.09

0.08

tained by (26), (28) and (29) are again exponential
as were those of Wilhelmson (1977) because of the
inverse temperature effect described previously
when ice or liquid water is present at low tempera-
tures. The curve for (30) shows this error was elimi-
nated by using the given empirical relationship; the

q

(°K)

-]

-2

a.

-4 I

800

600 400 200

Pressure ( hP;:)

(°K)

.{:]

b.
600

400 200

Pressure (hPg)

(*°K)

[{:]

Pressure {hPa)

F1G. 2. As in Fig. 1 except for test 2 (nonzero
precipitation fallspeed).

results are comparable to (15). It was not attempted,
but empirical adjustments can probably be made
of 6., to increase its accuracy as was done with
0;. The root-mean-square (rms) errors are given for
each scheme in Table 1.

Fig. 2 shows the temperature variations produced
by test 2 when precipitation was allowed to settle
in a physically realistic manner from the developing
updraft. We note a slightly improved performance
by 6; formulations due to the reduced magnitude
of €, and €, which are weighted by liquid and ice
condensate.

The results obtained for test 3, where all con-
densate was required to precipitate out instantane-
ously, demonstrated (as expected) that the variation
in 6 diagnosed by (26) and (28)-(30) were nearly

- indistinguishable from those diagnosed by (15). The

rms errors in the 6 diagnosed by (15) was only about
one-quarter of those produced by test 1 because of
the lower amounts of total water carried aloft. This
minimizes the error associated with neglecting heat
storage by water. As a result, errors in diagnosing
0 from (27) were also reduced in test 3. Because the
errors were so small in test 3, profiles of § would
be indistinguishable from the abscissa in graphs like
Fig. 1. Therefore, the results of test 3 were not
plotted.

The downdraft cases for test 1 and test 2 are shown
in Figs. 3 and 4. It can be seen that much better
results are obtained in all the pseudo-adiabatic ap-
proximations as a consequence of the reduced in-
verse temperature error effects. Again, (30) pro-
duces results nearly as good or better than (15) in

‘both the open and closed system cases. In calcula-

tions not reported here, it was found (15) and (30)
result in somewhat greater error at upper levels
when ice is not present. This is also demonstrated
by Wilhelmson (1977) and Lipps and Hemler (1980)
for the case of (15). These results clearly demon-
strate a sufficiently accurate diagnosis of 6 by (30)
to allow 6; to be considered as a thermodynamic
variable conservative over all water phase changes
in deep convective processes.

5. Discussion and conclusions

The use of ice-liquid water potential temperature
along with total water has been determined a viable
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and powerful alternative to the use of potential tem-
perature, water vapor and cloud water as time-
dependent prognostic variables in moist, deep at-
mospheric models. Simple Lagrangian, parcel model
calculations, encompassing the effects of fallout of
rain and ice, have clearly demonstrated the accuracy
of this system for reversible and irreversible
processes.

The incorporation of 8;; into a cloud model elimi-
nates the need for saturation adjustment procedures.
Such procedures require numerous approximations
and sudden adjustments which can lead to numerical
““shocks’” or computational noise. The incorpora-
tion of 6;; also reduces the number of time-dependent
variables by one. This occurs as water vapor is re-
placed by total water and cloud water becomes diag-
nostic. As temperatures become very cold, cloud ice
may be diagnosed instead of cloud water, if the ice
phase is considered. Water phase changes between
liquid, ice and vapor are greatly simplified in this
system since tendencies on temperature do not need
to be considered. The only source term on 6;; which
must be considered is that due to movement of ice
or liquid water relative to the air by precipitation.
This is simply accomplished by taking the differen-
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is evaporated.
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tial (33) with respect to time. The resulting relation-
ship is given by
de, 6y
dt 6

Lh.(ﬁ) + Lw(ﬁ)
dt precip dt precip

C, max(T, 253)

Because a time tendency on pressure is difficult to
formulate simply in the §; system, density may be

(50)

. used as the predictive quantity instead. In the case

of an anelastic model, the §; system would not affect
the pressure diagnostic equation.

The thermodynamic variable 8; has already been
incorporated into the CSU multi-dimensional cloud/
mesoscale model. The iteration procedure increases
the time required to perform a single time step inte-
gration by over a factor of 2 at grid points where
cloud water is present. However, since it is only a
small fraction of all grid points containing con-
densate, overall timing increases <10%. It is our be-
lief that the added simplicity without loss of ac-
curacy which we obtain from this thermodynamic
system far outweighs the disadvantage of added
computer cost when modeling deep tropospheric
convection. Moreover, use of such a thermody-
namic variable also greatly simplifies the formula-
tion of a cloud or mesoscale model using higher
order turbulence closure techniques.
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APPENDIX
List of Symbols

Ay affinity of melting (J kg™)

A,  affinity of vaporization (J kg™')

C; specific heat of ice water [=2.1 x 10® J K™*
kg™]

C, specific heat of liquid water [=4.187 X 103 J
K™ kg™]

C, specific heat of dry air at constant pressure
[=1.003 x 10° T Kt kg™]

C,n specific heat of moist air at constant pressure
(J K™ kg™)

C,, specific heat of water vapor at constant pres-
sure [=1.846 x 10° J K~! kg™]

e saturation vapor pressure with respect to ice
water (kPa)

€y saturation vapor pressure with respect to
liquid ‘water (kPa)

e, water vapor pressure (kPa)

g acceleration of gravity (m s~%)

H heaviside step function

L;, latent heat of sublimation (J kg™!)

L, latent heat of melting (J kg™!)

L,  latent heat of vaporization (J kg™?)

p total pressure of air (kPa)

Da pressure of dry air (kPa)

R dry air gas constant [=0.287 x 10*J K™!
kg™]

R, water vapor gas constant [=0.462 x 10°J
K™ kg™]

R, moist air gas constant (J K™! kg™)

r mixing ratio of total water

re mixing ratio of cloud water

r; mixing ratio of ice water

r mixing ratio of liquid water

r, mixing ratio of rain water

Fsi saturation mixing ratio with respect to ice
water '

For saturation mixing ratio with respect to liquid
water
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oy mixing ratio of vapor water
t time scale for air parcel (s)
t, time scale for rainwater (s)
t; time scale for icewater (s)
T temperature (K)
T, 273 K

vV, average terminal velocity of ice (m s™!)

V. average terminal velocity of rain (m s™)

w vertical velocity of air parcel (m s™)

Wmax amplitude of sine function giving w profile
(m s™)

Z height above ground (m)

€ ratio of molecular weight of moist air to that
of dry air [=0.611]

€ error involved in 6; approximation associ-
ated with r, term

€ error involved in 6, approximation associ-
ated with r; term

€3 error involved in 6,;, approximation associ-
ated with r, term

€, error involved in 6,;, approximation associ-
ated with r; term

Mo base state chemical potential (J kg™*)

e chemical potential of interface of a plane sur-
face of ice water and air (J kg™?)
chemical potential of water vapor (J kg™!)
7y chemical potential of interface of a plane sur-
face of liquid water and air (J kg™?)

0 potential temperature of air (K)

f..;  equivalent ice vapor potential temperature
(K)

6; Deardorff’s equivalent to 6;; (K)

0,  ice-liquid water potential temperature (K).
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