Ambiente Linux

Lab. Meteo Sinótica

Entrando nos computadores

- Username: curso1
- Senha: curso
- Abrir um terminal de comando

Alguns comandos

- pwd -> identifica o diretório atual
- Is -> lista o conteúdo do diretório
- mkdir SEUNOME -> cria um diretório chamado SEUNOME
- cd SEUNOME -> muda para o diretório SEUNOME

Baixando dados da reanálise do ECMWF (ERA-Interim)

- Abrir um navegador (Iceweasel, Epiphany)
- Ir para:
- http://data-

portal.ecmwf.int/data/d/interim_full_moda/

irefox 🔻 🗍 WH4	AT IS THE	T	ΣZ	USP N	Mail: E	Entra	• [C	Siste	mas	USP		🗌 At	ena			\square	niciao	aoAro	quiv	8	gran	izo sã	io pau] Mie	crosoft	Word.
🕨 📰 🖉 🕲 data-portal	.ecmwf.i	nt /da	ata/d/	/inte	rim_f	ull_mo	oda/																				
COMWE									н	lome	- V	our B	000		ain	Cor	atact	Fo	odha	ck	Sito	Mar		arc	h:		_
	Abou	+ 1 1.	_		Dr	odu	oto			lonu					<u></u>	rch	naci		Dubli	<u>en</u>	ione	- Micip	No	wes		ante	
	Overvie	w	2		For	ecast	ts		c	Comp	outing	2		Mod	dellin	a		N	lewsle	etters	3	2	Cale	endar		51115	
	Getting	her	е		Ord	ler Da	ata		A	rchiv	/e	,		Rea	naly	sis		M	lanua	ls			Emp	ployn	nent		
Sea Level Pressure and Temp	Commi	ttees	S		Orc	ler So	oftwai	re	F	Prepli	FS			Sea	isona	al		Li	ibrary				Ope	n Te	nders	3	
	ERA Inte	rim, M	lonthh	у Меа	ans of	Daily	Means	s, Full	Resol	lution	>																
	ERA	l In	ter	rim	I, N	lon	thl	уN	lea	ins	i of	f Da	aily	/ Me	ear	۱s,	Fu	II R	Res	olu	itic	on					
e of level		_																									
del levels	Note		You	ma	y b	e int	ere	steo	l in	taki	ing	parl	t in i	a <u>Re</u>	ana	alys	is L	lser	and	I Ap	plic	catio	on S	urv	<u>ey</u> (closi	ng
tential	31 38	.nua	ary .	201	4)																						
nperature	NEW	Dat	ta S	erv	er																						
tential vorticity	This s	serv	er is	s be	en i	repla	aced	l by	a m	ore	pow	/erfu	ll sy	stem	n tha	nt ca	in be	e fou	ind a	it ht	tp://	app	s.eci	mwf	f.int/	datas	ets/.
rface	Pleas	ie st	tart	usir	ng th	nis n	ew s	syste	em,	as t	his s	serv	er w	/ill be	e dis	scon	tinu	ed ir	n the	nea	ar fu	uture).				
A Interim Full	Note:	in o	orde	er to	o re	triev	e da	ata 1	ron	n th	IS S	erve	er, y	ou fi	irst	hav	e to	acc	ept	the	<u>co</u>	nditi	ons	of	use		
olution	Selec	t m	ont	h																							
ily		lan	Eab	Mar	Anr	May	lun	Ind.	A .u.a	Con	Oct	New	Dee		lan	Eab	Mor	Apr	May	lun	I.I.	Aug	Son	Oct	Nov	Dee	
<u>ariant</u>	1070	Jan j	Feb	Mar	Apr	may	Jun	Jui	Aug .	Sep		VOV	Dec	1020	Jan	Feb	Mar	Apr .	<u>inay</u>	Jun	Jui	Aug	Sep :			Dec	
optic Monthly	1001													1002													
ans othly Means of	1002													1004													
ly Means	1903													1904													
	1903													1900													
sonal	1987													1988													
ır Requests	1989													1990													
(811118)	1991													1992													
a usage	1993													<u>1994</u>													
nditions	1995													<u>1996</u>													
	<u>1997</u>													<u>1998</u>													
also	<u>1999</u>													2000													
ta EAO	2001													2002													
ta Servers	2003													2004													
ta Services	2005													2006													
IB decoder	2007													2008													
	2009													<u>2010</u>													
	2011													<u>2012</u>													
	<u>2013</u>																						0	•			
	2	<u>Jan</u> [<u>reb</u>	<u>Mar</u>	Apr	мау	<u>Jun</u>	Jul	AUG	<u>26</u> b	<u>Uct</u>	NOV	Dec		<u>Jan</u>	<u>reb</u>	Mar	<u>Apr</u>	<u>May</u>	<u>Jun</u>	Jul	Aug	<u>Sep</u>	Uct	NOV	Dec	
	Select	t All	or <u>C</u>	lear																							
	Selec	t n	arar	not	are			_	_		_				_	_											
	Selec	r pa	aran	neu																							
	10	1 000	stro I		nd o	0.00.04	0000	•						1	- 10	1 000	tro M		d 001	mno	nont						

Selecionar:

- meses de janeiro e julho de 2011
- E as variáveis:
- 10 metre U wind component
- 10 metre V wind component
- 2 metre temperature
- Mean sea level pressure
- Sea surface temperature

Firefox 🔻	WHAT IS THE T	SZ USP Mail: Entra	Sistemas USP	Atena	🗍 Iniciacao Arguiy	<u> g</u> ranizo são pau	Microsoft Word	ا ھ
	C			C		101 3	C	× .

iii data-portal.ecmwf.int/data/d/interim_full_moda/

Select parameters	
10 metre U wind component	10 metre V wind component
10 metre wind speed	2 metre dewpoint temperature
2 metre temperature	Albedo
Boundary layer height	Charnock
Convective available potential energy	Forecast albedo
Forecast logarithm of surface roughness for heat	Forecast surface roughness
High cloud cover	Ice temperature layer 1
Ice temperature layer 2	Ice temperature layer 3
Ice temperature layer 4	Instantaneous eastward turbulent surface stress
Instantaneous moisture flux	Instantaneous northward turbulent surface stress
Instantaneous surface sensible heat flux	Logarithm of surface roughness length for heat
Low cloud cover	Mean sea level pressure
Medium cloud cover	Sea surface temperature
Sea-ice cover	Skin reservoir content
Skin temperature	Snow albedo
Snow density	Snow depth
Soil temperature level 1	Soil temperature level 2
Soil temperature level 3	Soil temperature level 4
Surface pressure	Surface roughness
Temperature of snow layer	Total cloud cover
Total column ice water	Total column liquid water
Total column ozone	Total column water
Total column water vapour	Vertical integral of cloud frozen water
Vertical integral of cloud liquid water	Vertical integral of divergence of cloud frozen water flux
Vertical integral of divergence of cloud liquid water flu	x 🔲 Vertical integral of divergence of geopotential flux
Vertical integral of divergence of kinetic energy flux	Vertical integral of divergence of mass flux
Vertical integral of divergence of moisture flux	Vertical integral of divergence of ozone flux
Vertical integral of divergence of thermal energy flux	Vertical integral of divergence of total energy flux

Hirefox WHAT IS THE T Z USP Mail: Entra	Sistemas USP	🗌 Atena		🗍 IniciacaoArquiv	🕺 granizo são pau	Microsoft Word	ا 👷
(la/						
Skin temperature			5	snow albedo			
Snow density			5	snow depth			
Soil temperature level 1			S	soil temperature leve	el 2		
Soil temperature level 3			5	Soil temperature leve	el 4		
Surface pressure			5	Surface roughness			
Imperature of snow lay	ver			otal cloud cover			
				otal column liquid w	vater		
				otal column water			
	our			/ertical integral of cl	oud frozen water		
	nquid water	id water flue 🗖		vertical integral of di	vergence of cloud	toptiol flux	
	gence of cloud liqu	lid water flux		/ertical integral of di	vergence of geopo	tential flux	
	gence of kinetic en	ergy nux 📃		/ertical integral of di	vergence of mass r	iux 	
Vertical integral of diver	gence of thorsal a	nux 📃		/entical integral of di	vergence of ozone	nux	
	yence of thermal e	nergy nux		/entical integral of or	vergence or total e	d water flux	
	vard goopotoptial fl			/entical integral of ea	estward boat flux	u water nux	
	vard geopotential in	flux 🗌		/entical integral of ea	stward mean flux		
	vard ozono flux			/entical integral of ea	stward total opera	u fluv	
	vard water vapour f	flux		/entical integral of ea	siwaru totar energ	y nux	
	aru water vapour i			/entical integral of m	are of atmosphoro		
Vertical integral of mass	tondoncy			/entical integral of m	ass of autosphere	on water flux	
Vertical integral of mass	ward cloud liquid y	water flux	v	/ertical integral of no	orthward decodent	ial flux	
Vertical integral of north	ward heat flux		v	/ertical integral of no	orthward kinetic en	erav flux	
Vertical integral of north	ward mass flux		v	ertical integral of no	orthward ozone flux		
Vertical integral of north	ward total energy f	flux 🗖	l v	/ertical integral of no	orthward water van	- our flux	
Vertical integral of ozon	e		_ v	/ertical integral of no	otential+internal en	erav	
Vertical integral of octer	tial+internal+laten	t energy	V	/ertical integral of te	mperature	33	
Vertical integral of them	nal energy		V	/ertical integral of to	tal energy		
Vertical integral of water	vapour		V	/olumetric soil water	layer 1		
Volumetric soil water lay	ver 2		V	/olumetric soil water	layer 3		
Volumetric soil water lay	ver 4	_	-		-		
<u>Select All</u> or <u>Clear</u>							

Note: In order to retrieve data from this server, you first have to accept the conditions of use.

If you experience any difficulties, please check our data FAQ first

W

S

🛛 z 🛛 💦

Aceitar as condições de uso

data-portal.ecmwf.int/data/d/license/interim_full/

0

0

.

e

Firefox WHAT IS THE T... Z USP Mail: Entra... Sistemas USP

🗌 IniciacaoArquiv... 🕺 granizo são pau... 💭 Microsoft Word... 🛓 Microsoft Word.

(ata-portal.ecmwf.int/data/d/license/interim_full/

Licensor, requesting the Licensee to remedy such breach.

- 9. The validity, construction and performance of this agreement shall be governed by the law of England. In the event of a dispute arising in connection with this agreement, the Parties shall attempt to settle their differences in an amicable manner; in the event that any dispute cannot be so settled, it shall be finally settled under the Rules of Conciliation and Arbitration of the International Chamber of Commerce by three arbitrators appointed in accordance with the said rules; unless otherwise agreed in writing, the arbitrators shall sit in London, England. The proceedings shall be in the English language. In accordance with Sections 45 and 69 of the Arbitration Act 1996, the right of appeal by either Party to the English Courts on a question of law arising in the course of any arbitral proceedings or out of an award made in any arbitral proceedings is hereby agreed to be excluded.
- 10. The Licensor makes no warranty with regard to the software provided to the Licensee to access the Archive Products. The software is provided on an "as is" basis. Any warranty implied by statute or otherwise is hereby excluded from this agreement to the fullest extent permissible by law.
- 11. The Licensee acknowledges that Direct Access to the Archive Products may be unavailable, delayed or interrupted. The Licensor takes no responsibility for, and will not be liable for, any unavailability, delay or interruption in Direct Access to the Archive Products at any time or for any period.
- 12. The Licensee undertakes to use identifiers, passwords and any other security information or device received from ECMWF for the sole purposes for which access to the ECMWF systems has been granted and not to make them available to third parties under any circumstances.
- ECMWF reserves the right, at its sole discretion, to change, modify, add, remove or otherwise alter the Archive Products at any time without notice.
- 14. The Licensor reserves the right, at its sole discretion, to change, modify, add, remove or otherwise alter this agreement at any time without notice.

If you accept these conditions please enter the information below for our records, and press Accept.

Email:	ritaynoue@model.iag.usp.br	
Name:	Rita Ynoue	
Organisation:	USP	
Country:	Brazil	
Decline		Accept

irefox 🔻 🗍 WH4	AT IS THE	T	ΣZ	USP N	Mail: E	Entra	• [C	Siste	emas	USP		🗌 At	ena			\square	niciao	aoAro	quiv	8	gran	izo sã	io pau] Mie	crosoft	Word.
🕨 📰 🖉 🕲 data-portal	.ecmwf.i	nt /da	ata/d/	/inte	rim_f	ull_mo	oda/																				
COMWE									н	lome	- V	our B	000		ain	Cor	atact	Fo	odha	ck	Sito	Mar		arc	h:		_
	Abou	+ 1 1.	_		Dr	odu	oto			lonu					<u></u>	rch	naci		Dubli	<u>en</u>	ione	- Micip	No	wes		ante	
	Overvie	w	2		For	ecast	ts		c	Comp	outing	2		Mod	dellin	a		N	lewsle	etters	3	2	Cale	endar		51115	
	Getting	her	е		Ord	ler Da	ata		A	rchiv	/e	,		Rea	naly	sis		M	lanua	ls			Emp	ployn	nent		
Sea Level Pressure and Temp	Commi	ttees	S		Orc	ler So	oftwai	re	F	Prepli	FS			Sea	isona	al		Li	ibrary				Ope	n Te	nders	3	
	ERA Inte	rim, M	lonthh	у Меа	ans of	Daily	Means	s, Full	Resol	lution	>																
	ERA	l In	ter	rim	I, N	lon	thl	уN	lea	ins	i of	f Da	aily	/ Me	ear	۱s,	Fu	II R	Res	olu	itic	on					
e of level		_																									
del levels	Note		You	ma	y b	e int	ere	steo	l in	taki	ing	parl	t in i	a <u>Re</u>	ana	alys	is L	lser	and	I Ap	plic	catio	on S	urv	<u>ey</u> (closi	ng
tential	31 38	.nua	ary .	201	4)																						
nperature	NEW	Dat	ta S	erv	er																						
tential vorticity	This s	serv	er is	s be	en i	repla	aced	l by	a m	ore	pow	/erfu	ll sy	stem	n tha	nt ca	in be	e fou	ind a	it ht	tp://	app	s.eci	mwf	f.int/	datas	ets/.
rface	Pleas	ie st	tart	usir	ng th	nis n	ew s	syste	em,	as t	his s	serv	er w	/ill be	e dis	scon	tinu	ed ir	n the	nea	ar fu	uture).				
A Interim Full	Note:	in o	orde	er to	o re	triev	e da	ata 1	ron	n th	IS S	erve	er, y	ou fi	irst	hav	e to	acc	ept	the	<u>co</u>	nditi	ons	of	use		
olution	Selec	t m	ont	h																							
ily		lan	Eab	Mar	Anr	May	lun	Ind.	A .u.a	Con	Oct	New	Dee		lan	Eab	Mor	Apr	May	lun	I.I.	Aug	Son	Oct	Nov	Dee	
<u>ariant</u>	1070	Jan j	Feb	Mar	Apr	may	Jun	Jui	Aug .	Sep		VOV	Dec	1020	Jan	Feb	Mar	Apr .	<u>iviay</u>	Jun	Jui	Aug	Sep :			Dec	
optic Monthly	1001													1002													
ans othly Means of	1002													1004													
ly Means	1903													1904													
	1903													1900													
sonal	1987													1988													
ır Requests	1989													1990													
(811118)	1991													1992													
a usage	1993													<u>1994</u>													
nditions	1995													<u>1996</u>													
	<u>1997</u>													<u>1998</u>													
also	<u>1999</u>													2000													
ta EAO	2001													2002													
ta Servers	2003													2004													
ta Services	2005													2006													
IB decoder	2007													2008													
	2009													<u>2010</u>													
	2011													<u>2012</u>													
	<u>2013</u>																						0	•			
	2	<u>Jan</u> [<u>reb</u>	<u>Mar</u>	Apr	мау	<u>Jun</u>	Jui	AUG	<u>26</u> b	<u>Uct</u>	NOV	Dec		<u>Jan</u>	<u>reb</u>	Mar	<u>Apr</u>	<u>May</u>	<u>Jun</u>	Jul	Aug	<u>Sep</u>	Uct	NOV	Dec	
	Select	t All	or <u>C</u>	lear																							
	Selec	t n	arar	not	are			_	_		_				_	_											
	Selec	r pa	aran	neu																							
	10	1 000	stro I		nd o	0.00.04	0000	•						1	- 10	1 000	tro M		d 001	mno	nont						

Selecionar:

- meses de janeiro e julho de 2011
- E as variáveis:
- 10 metre U wind component
- 10 metre V wind component
- 2 metre temperature
- Mean sea level pressure
- Sea surface temperature

Firefox 🔻	WHAT IS THE T	SZ USP Mail: Entra	Sistemas USP	Atena	🗍 Iniciacao Arguiy	<u> g</u> ranizo são pau	Microsoft Word	ا ھ
	C			C		101 3	C	× .

iii data-portal.ecmwf.int/data/d/interim_full_moda/

Select parameters	
10 metre U wind component	10 metre V wind component
10 metre wind speed	2 metre dewpoint temperature
2 metre temperature	Albedo
Boundary layer height	Charnock
Convective available potential energy	Forecast albedo
Forecast logarithm of surface roughness for heat	Forecast surface roughness
High cloud cover	Ice temperature layer 1
Ice temperature layer 2	Ice temperature layer 3
Ice temperature layer 4	Instantaneous eastward turbulent surface stress
Instantaneous moisture flux	Instantaneous northward turbulent surface stress
Instantaneous surface sensible heat flux	Logarithm of surface roughness length for heat
Low cloud cover	Mean sea level pressure
Medium cloud cover	Sea surface temperature
Sea-ice cover	Skin reservoir content
Skin temperature	Snow albedo
Snow density	Snow depth
Soil temperature level 1	Soil temperature level 2
Soil temperature level 3	Soil temperature level 4
Surface pressure	Surface roughness
Temperature of snow layer	Total cloud cover
Total column ice water	Total column liquid water
Total column ozone	Total column water
Total column water vapour	Vertical integral of cloud frozen water
Vertical integral of cloud liquid water	Vertical integral of divergence of cloud frozen water flux
Vertical integral of divergence of cloud liquid water flu	x 🔲 Vertical integral of divergence of geopotential flux
Vertical integral of divergence of kinetic energy flux	Vertical integral of divergence of mass flux
Vertical integral of divergence of moisture flux	Vertical integral of divergence of ozone flux
Vertical integral of divergence of thermal energy flux	Vertical integral of divergence of total energy flux

irrefox 🔪 💭 WHAT IS THE T 🛛 🗶 USP Mail: Entra 💭 Sistemas USP 🔅 Atena	🔄 IniciacaoArquiv 🛐 granizo são pau 🗍 Microsoft Word 👲 Mi
data-portal.ecmwf.int/data/d/interim_full_moda/	
Soli temperature level 3	Soli temperature level 4
Surface pressure	Surface roughness
Temperature of snow layer	Total cloud cover
Total column ice water	Total column liquid water
Total column ozone	Total column water
Total column water vapour	Vertical integral of cloud frozen water
Vertical integral of cloud liquid water	Vertical integral of divergence of cloud frozen water flux
Vertical integral of divergence of cloud liquid water flux	Vertical integral of divergence of geopotential flux
Vertical integral of divergence of kinetic energy flux	Vertical integral of divergence of mass flux
Vertical integral of divergence of moisture flux	Vertical integral of divergence of ozone flux
Vertical integral of divergence of thermal energy flux	Vertical integral of divergence of total energy flux
Vertical integral of eastward cloud frozen water flux	Vertical integral of eastward cloud liquid water flux
Vertical integral of eastward geopotential flux	Vertical integral of eastward heat flux
Vertical integral of eastward kinetic energy flux	Vertical integral of eastward mass flux
Vertical integral of eastward ozone flux	Vertical integral of eastward total energy flux
Vertical integral of eastward water vapour flux	Vertical integral of energy conversion
Vertical integral of kinetic energy	Vertical integral of mass of atmosphere
Vertical integral of mass tendency	Vertical integral of northward cloud frozen water flux
Vertical integral of northward cloud liquid water flux	Vertical integral of northward geopotential flux
Vertical integral of northward heat flux	Vertical integral of northward kinetic energy flux
Vertical integral of northward mass flux	Vertical integral of northward ozone flux
Vertical integral of northward total energy flux	Vertical integral of northward water vapour flux
Vertical integral of ozone	Vertical integral of potential+internal energy
Vertical integral of potential+internal+latent energy	Vertical integral of temperature
Vertical integral of thermal energy	Vertical integral of total energy
Vertical integral of water vapour	Volumetric soil water layer 1
Volumetric soil water layer 2	Volumetric soil water layer 3
Volumetric soil water layer 4	
Select All or Clear	
Retrieve GRIB Retrieve NetCDF Plot data View ba	tch request
Note:	
The provision of NetCDF is experimental and the form	nat produced will change in the future

If you experience any difficulties, please check our data FAQ first

Retrieve NetCDF

netcdf10

ERA Interim, Monthly means of Daily means

Type: Analysis

Type of level: Surface

Month: 201101, 201107

Parameter: 10 metre U wind component, 10 metre V wind component, 2 metre temperature, Mean sea level pressure, Sea surface temperature

Please note:

The default area is global and the default representation is on gaussian grids for surface fields and spherical harmonics or gaussian grids for upper air fields. You can interpolate the data to a lat/lon grid or choose a sub-area by clicking on the icons below. Note that to be able to select a sub-area, you also need to choose a lat/lon grid, otherwise the retrieval will fail.

The netcdf will be done using the following attributes:

Area:

Default (as archived) Default (as archived)

Retrieve and convert to NetCDF:

<u>Now</u>

© ECMWF

Firefox *	🖂 WH4	AT IS THE T	∑ USP Mail: Entra	Sistemas USP	Atena	1]] IniciacaoArquiv	匑 gran	zo são pau	Microsoft Word	🚖 Microsoft Word	🗍 aula1 [Modo de	Index of /www/
🗲 🗰 🖉 da	ata-porta	l.ecmwf.int/da	ata/d/inspect/personal	/results/netcdf10%2C	Tue Feb 4 19%3	A37%3A1	19 2014/						
									-				
ECM			Home Your Room	<u>m Login Contac</u>	t <u>Feedback</u>	Site Ma	ap <u>Search:</u>						
		About Us	Enrecasts	Services F	lodelling	Public Newslet	ters Calend	&Events					
		Getting her	e Order Data	Archive R	eanalysis	Manuals	Employ	ment					
Mean Sea Cevel Pressur	re and Temp	Committees	s Order Software	PrepIFS S	easonal	Library	Open T	enders					
		Personal > Re	<u>suits of your tasks</u> > net	CdT10, Tue Feb 4 19:37	:19 2014>								
		netcdf	10, Tue Feb	4 19:37:19	2014								
Carron a		Surface 2	.01101, 201107 ir	nterim_full_moda	a Monthly me	eans of	Daily means	ERA					
1. The		Interim Ar	nalysis, 10 me	tre U wind comp	onent, Mean	i sea le	evel pressure						
111-2	a.	Task com	plete										
ALC: NO	2	10 fielde r	ratriouad					0					
		TO fields i	etheved						Abrir "output	t.nc"			
		Nai	me Size	Creat	ed				Você selec	ionou abrir:			
		☐ <u>nc</u>	2.2 Mbyt	tes Tue Fe	eb 4 19:37:24	4 2014		Û	📄 outp	out.nc			
		d grib	2.1 Mbyt	tes Tue Fe	eb 4 19:37:24	4 2014		Û	Tipo	nc File (2,2 MB)			
									Site:	http://download.ecm	wf.int		
		Please n	ote:						O que o F	Firefox deve fazer?			
		Thank vo	ou for downloadin	g FCMWF data					© <u>A</u> k	orir com o: <u>P</u> rocurar	·		
				. <u>g</u>					() () () () () () () () () () () () () (ownload			
										emorizar a decisão para	este tino de arquivo		
										errorizar a decisão part	reste tipo de arquivo		
⊗ 04-02-2014								© ECM					
											ОК	Cancelar	
								L	_				

Copiar do diretório Downloads para o seu diretório

- cd Dowloads/
- mv output.nc /home/curso1/seunome
- cd /home/curso1/seunome
- mv output.nc sup.nc

Grads

- grads
- enter
- sdfopen sup.nc

Grads

- d msl (d = display = mostrar)
- c (clear = limpar)
- set lon -180 180 (deixar long 0 no meio)
- d msl
- d u10;v10
- d t2m
- set t 2 (t 1 = janeiro/2011; t 2 = julho/2011)

Script do grads

- Abrir um outro terminal de comandos
- nedit nomedoarquivo.gs -> abre o arquivo "nome do arquivo.gs" em um editor de texto
- & -> no final do comando, deixa disponível o prompt de comando
- Dentro do editor de texto: colocar os mesmos comandos do grads, mas entre apóstrofes, por exemplo:
- 'sdfopen sup.nc'
- 'set lon -180 180'
- 'd msl/100'

💿 x11	- 33500		Trans. In Taxa	a second		
🔤 🚡 💥 😂 🦓 🚔 🌖) 🛃 🖂				o graniza	.iag.usp.br 📗
O Aplicativos Locais	Sistema 😡				Ter 04 F	ev, 18:14 🕼 🔳
📓 script1.gs - /data	2/opera/reanalise1	/aula _ 🗆 🗙 🔳 📃		GrADS 2.0.a9.og	ja.1	×
File Edit Search	Preferences Shell	Macro				
Windows		Help				
'reinit' 'sdfopen sup.nc' 'set lon -180 180' 'd msl/100' *						
		oper	a@cirrus: /data2/oj	pera/reanalise1/aul	a2 _	- - ×
*	Arq No h All ga-> ga-> ga-> ga-> ga-> ga->	uivo <u>E</u> ditar <u>V</u> er Te <u>r</u> ardcopy metafile op files closed; all d GrADS attributes ha script1.gs	rminal Aj <u>u</u> da ben lefined objects rele ave been reinitiali:	eased; zed		
🛅 🛛 [Terminal]	🔳 [Terminal]	🔳 opera@cirrus	🔳 [Terminal]	🖬 script1.gs (e	GrADS	

Aula preparada por Thiago Degola, disponível em http://www.dca.iag.usp.br/www/material/ritaynoue/aca-0422/2013/grads/aula1.pdf

📀 🥭 🚎 🖸 🐬 🙋 🕓 💽 🕵 🍢

PT 🔺 💸 🏴 🛱 🌗 18:22 04/02/2014

- Mostre a pressão reduzida ao nível médio do mar (em hPa) com intervalos de 4hPa e o vento horizontal em janeiro de 2011 para a região compreendida entre
 - Latitudes: 90oS e 0o
 - Longitudes: 90oW e 20oE

- Mostre a temperatura (em oC) com intervalos de 5oC e as linhas de corrente (na cor branca se o fundo for preto ou na cor preta se o fundo for branco) em julho de 2011 para a região compreendida entre
 - Latitudes: 40oN e 40oS
 - Longitudes: 200E e 1500E

 Calcule a diferença da temperatura (em oC) entre janeiro e julho de 2011 para todo o domínio

Coordenadas esféricas

- Leia o texto:
- <u>http://www.met.wau.nl/education/atd/Practic</u> <u>al../unit%202/Coord.html</u>

- E a explicação do comando cdiff do Grads:
- <u>http://www.met.wau.nl/education/atd/Practic</u> <u>al../gadoc/gradfunccdiff.html</u>

- Calcular o gradiente de temperatura
- Calcular a advecção de temperatura
- Plotar:
 - Advecção de temperatura (shaded)
 - Temperatura (contour)
 - Vento (vetor)

- Calcular o gradiente de pressão horizontal
- Calcular o vento geostrófico utilizando a definição:

$$\begin{aligned} f\cdot v &= \frac{1}{\rho}\frac{\partial P}{\partial x} \\ f\cdot u &= -\frac{1}{\rho}\frac{\partial P}{\partial y} \end{aligned}$$

- Suponha densidade = 1 kg.m-3
- Plote o vento geostrófico, o vento e a pressão reduzida ao nível médio do mar.